The production of membrane proteins of high purity and in satisfactory yields is crucial for biomedical research. Due to their involvement in various cellular processes, membrane proteins have increasingly become some of the most important drug targets in modern times. Therefore, their structural and functional characterization is a high priority. However, protein expression has always been more challenging for membrane proteins than for soluble proteins. In this review, we present four of the most commonly-used expression systems for eukaryotic membrane proteins. We describe the benefits and drawbacks of bacterial, yeast, insect and mammalian cells. In addition, we describe the different features (growth rate, yield, post-translational modifications) of each expression system, and how they are influenced by the construct design and modifications of the target gene. Cost-effective and fast-growing E. coli is mostly selected for the production of small, simple membrane proteins that, if possible, do not require post-translational modifications but has the potential for the production of bigger proteins as well. Yeast hosts are advantageous for larger and more complex proteins but for the most complex ones, insect or mammalian cells are used as they are the only hosts able to perform all the post-translational modifications found in human cells. A combination of rational construct design and host cell choice can dramatically improve membrane protein production processes.
Arenaviridae is a family of viruses harbouring important emerging pathogens belonging to the Bunyavirales order. Like in other segmented negative strand RNA viruses, the nucleoprotein (NP) is a major actor of the viral life cycle being both (i) the necessary co-factor of the polymerase present in the L protein, and (ii) the last line of defence of the viral genome (vRNA) by physically hiding its presence in the cytoplasm. The NP is also one of the major players interfering with the immune system. Several structural studies of NP have shown that it features two domains: a globular RNA binding domain (NP-core) in its N-terminal and an exonuclease domain (ExoN) in its C-terminal. Further studies have observed that significant conformational changes are necessary for RNA encapsidation. In this review we revisited the most recent structural and functional data available on Arenaviridae NP, compared to other Bunyavirales nucleoproteins and explored the structural and functional implications. We review the variety of structural motif extensions involved in NP–NP binding mode. We also evaluate the major functional implications of NP interactome and the role of ExoN, thus making the NP a target of choice for future vaccine and antiviral therapy.
Styrene maleic acid (SMA) polymers have proven to be very successful for the extraction of membrane proteins, forming SMA lipid particles (SMALPs), which maintain a lipid bilayer around the membrane protein. SMALP-encapsulated membrane proteins can be used for functional and structural studies. The SMALP approach allows retention of important protein-annular lipid interactions, exerts lateral pressure, and offers greater stability than traditional detergent solubilisation. However, SMA polymer does have some limitations, including a sensitivity to divalent cations and low pH, an absorbance spectrum that overlaps with many proteins, and possible restrictions on protein conformational change. Various modified polymers have been developed to try to overcome these challenges, but no clear solution has been found. A series of partially-esterified variants of SMA (SMA 2625, SMA 1440 and SMA 17352) has previously been shown to be highly effective for solubilisation of plant and cyanobacterial thylakoid membranes. It was hypothesised that the partial esterification of maleic acid groups would increase tolerance to divalent cations. Therefore, these partially-esterified polymers were tested for the solubilisation of lipids and membrane proteins, and their tolerance to magnesium ions. It was found that all partially esterified polymers were capable of solubilising and purifying a range of membrane proteins, but the yield of protein was lower with SMA 1440, and the degree of purity was lower for both SMA 1440 and SMA 17352. SMA 2625 performed comparably to SMA 2000. SMA 1440 also showed an increased sensitivity to divalent cations. Thus, it appears the interactions between SMA and divalent cations are more complex than proposed and require further investigation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.