We report the Au catalyst-assisted synthesis of 20 μm long GaAs nanowires by the vapor-liquid-solid hydride vapor phase epitaxy (HVPE) exhibiting a polytypism-free zincblende phase for record radii lower than 15 nm down to 5 nm. HVPE makes use of GaCl gaseous growth precursors at high mass input of which fast dechlorination at the usual process temperature of 715 °C results in high planar growth rate (standard 30-40 μm/h). When it comes to the vapor-liquid-solid growth of nanowires, fast solidification at a rate higher than 100 μm/h is observed. Nanowire growth by HVPE only proceeds by introduction of precursors in the catalyst droplets from the vapor phase. This promotes almost pure axial growth leading to nanowires with a constant cylinder shape over unusual length. The question of the cubic zincblende structure observed in HVPE-grown GaAs nanowires regardless of their radius is at the heart of the paper. We demonstrate that the vapor-liquid-solid growth in our conditions takes place at high liquid chemical potential that originates from very high influxes of both As and Ga. This yields a Ga concentration systematically higher than 0.62 in the Au-Ga-As droplets. The high Ga concentration decreases the surface energy of the droplets, which disables nucleation at the triple phase line thus preventing the formation of wurtzite structure whatever the nanowire radius is.
We report the first synthesis of GaAs nanowires (NWs) by Au-assisted vapor-liquid-solid (VLS) growth in the novel hydride vapor phase epitaxy (HVPE) environment. Forty micrometer long rodlike <111> monocrystalline GaAs nanowires exhibiting a cubic zinc blende structure were grown in 15 min with a mean density of 10(6) cm(-2). The synthesis of such long figures in such a short duration could be explained by the growth physics of near-equilibrium HVPE. VLS-HVPE is mainly based on solidification after direct and continuous feeding of the arsenious and GaCl growth precursors through the Au-Ga liquid catalyst. Fast solidification (170 microm/h) is then assisted by the high decomposition frequency of GaCl. This predominant feeding through the liquid-solid interface with no mass and kinetic hindrance favors axial rather than radial growth, leading to twin-free nanowires with a constant cylinder shape over unusual length. The achievement of GaAs NWs several tens of micrometers long showing a high surface to volume ratio may open the field of III-V wires, as already addressed with ultralong Si nanowires.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.