We constructed a library of >10(12) unique, covalently coupled mRNA-protein molecules by randomizing three exposed loops of an immunoglobulin-like protein, the tenth fibronectin type III domain (10Fn3). The antibody mimics that bound TNF-alpha were isolated from the library using mRNA display. Ten rounds of selection produced 10Fn3 variants that bound TNF-alpha with dissociation constants (K(d)) between 1 and 24 nM. After affinity maturation, the lowest K(d) measured was 20 pM. Selected antibody mimics were shown to capture TNF-alpha when immobilized in a protein microarray. 10Fn3-based scaffold libraries and mRNA-display allow the isolation of high-affinity, specific antigen binding proteins; potential applications of such binding proteins include diagnostic protein microarrays and protein therapeutics.
IL-33 is a tissue-derived cytokine that induces and amplifies eosinophilic inflammation and has emerged as a promising new drug target for asthma and allergic disease. Common variants at IL33 and IL1RL1, encoding the IL-33 receptor ST2, associate with eosinophil counts and asthma. Through whole-genome sequencing and imputation into the Icelandic population, we found a rare variant in IL33 (NM_001199640:exon7:c.487-1G>C (rs146597587-C), allele frequency = 0.65%) that disrupts a canonical splice acceptor site before the last coding exon. It is also found at low frequency in European populations. rs146597587-C associates with lower eosinophil counts (β = -0.21 SD, P = 2.5×10–16, N = 103,104), and reduced risk of asthma in Europeans (OR = 0.47; 95%CI: 0.32, 0.70, P = 1.8×10–4, N cases = 6,465, N controls = 302,977). Heterozygotes have about 40% lower total IL33 mRNA expression than non-carriers and allele-specific analysis based on RNA sequencing and phased genotypes shows that only 20% of the total expression is from the mutated chromosome. In half of those transcripts the mutation causes retention of the last intron, predicted to result in a premature stop codon that leads to truncation of 66 amino acids. The truncated IL-33 has normal intracellular localization but neither binds IL-33R/ST2 nor activates ST2-expressing cells. Together these data demonstrate that rs146597587-C is a loss of function mutation and support the hypothesis that IL-33 haploinsufficiency protects against asthma.
Crystalline bodies (CBs) can develop in the endoplasmic reticulum (ER) of antibody-producing cells. Although this phenotype is often reported in association with plasma cell dyscrasias and other hematological disorders, the details of CB biogenesis and CB's roles in pathophysiology remain poorly understood. Using an imaging-based screening method, we identified a secretion-competent human IgG2/λ clone that develops spindle-shaped intracellular crystals in transiently-transfected HEK293 cells upon Brefeldin A treatment. When stably overexpressed from CHO cells, the IgG2/λ clone spontaneously produced spindle-shaped CBs in the ER. Some CBs were released to the extracellular space while remaining enclosed by the membranes of secretory pathway origin. Structural modeling on the variable-region did not uncover prominent surface characteristics such as charge clusters. In contrast, alterations to the constant domain-encoded properties revealed their modulatory roles in CB-inducing propensities and CB morphology. For example, deletion of the entire Fc domain changed the morphology of CBs into thin filaments. Elimination of an N-linked glycan by a N297A mutation promoted Russell body biogenesis accompanied by marked reduction in IgG secretion. Isotype class switching from the original IgG2 to IgG1 and IgG4 changed the crystal morphology from spindle-shaped to long needle and acicular shaped, respectively. The IgG3 version, in contrast, suppressed the CB formation. Either the HC or LC alone or the Fc-domain alone did not trigger CB biogenesis. An IgG's in vivo crystal morphology and crystallization propensity can thus be modulated by the properties genetically and biochemically encoded in the HC constant region.
The underlying reasons for why some mAb (monoclonal antibody) clones are much more inclined to induce a Russell body (RB) phenotype during immunoglobulin biosynthesis remain elusive. Although RBs are morphologically understood as enlarged globular aggregates of immunoglobulins deposited in the endoplasmic reticulum (ER), little is known about the properties of the RB-inducing mAb clones as secretory cargo and their physical behaviors in the extracellular space. To elucidate how RB-inducing propensities, secretion outputs, and the intrinsic physicochemical properties of individual mAb clones are interrelated, we used HEK293 cells to study the biosynthesis of 5 human IgG mAbs for which prominent solution behavior problems were known a priori. All 5 model mAbs with inherently high condensation propensities induced RB phenotypes both at steady state and under ER-to-Golgi transport block, and resulted in low secretion titer. By contrast, one reference mAb that readily crystallized at neutral pH in vitro produced rod-shaped crystalline bodies in the ER without inducing RBs. Another reference mAb without notable solution behavior issues did not induce RBs and was secreted abundantly. Intrinsic physicochemical properties of individual IgG clones thus directly affected the biosynthetic steps in the ER, and thereby produced distinctive cellular phenotypes and influenced IgG secretion output. The findings implicated that RB formation represents a phase separation event or a loss of colloidal stability in the secretory pathway organelles. The process of RB induction allows the cell to preemptively reduce the extracellular concentration of potentially pathogenic, highly aggregation-prone IgG clones by selectively storing them in the ER.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.