Body plans, which characterize the anatomical organization of animal groups of high taxonomic rank, often evolve by the reduction or loss of appendages (limbs in vertebrates and legs and wings in insects, for example). In contrast, the addition of new features is extremely rare and is thought to be heavily constrained, although the nature of the constraints remains elusive. Here we show that the treehopper (Membracidae) 'helmet' is actually an appendage, a wing serial homologue on the first thoracic segment. This innovation in the insect body plan is an unprecedented situation in 250 Myr of insect evolution. We provide evidence suggesting that the helmet arose by escaping the ancestral repression of wing formation imparted by a member of the Hox gene family, which sculpts the number and pattern of appendages along the body axis. Moreover, we propose that the exceptional morphological diversification of the helmet was possible because, in contrast to the wings, it escaped the stringent functional requirements imposed by flight. This example illustrates how complex morphological structures can arise by the expression of ancestral developmental potentials and fuel the morphological diversification of an evolutionary lineage.
SummaryCilia and flagella are evolutionary conserved organelles that generate fluid movement and locomotion, and play roles in chemosensation, mechanosensation and intracellular signalling. In complex organisms, cilia are highly diversified, which allows them to perform various functions; however, they retain a 9+0 or 9+2 microtubules structure connected to a basal body. Here, we describe FOR20 (FOPrelated protein of 20 kDa), a previously uncharacterized and highly conserved protein that is required for normal formation of a primary cilium. FOR20 is found in PCM1-enriched pericentriolar satellites and centrosomes. FOR20 contains a Lis1-homology domain that promotes self-interaction and is required for its satellite localization. Inhibition of FOR20 expression in RPE1 cells decreases the percentage of ciliated cells and the length of the cilium on ciliated cells. It also modifies satellite distribution, as judged by PCM1 staining, and displaces PCM1 from a detergent-insoluble to a detergent-soluble fraction. The subcellular distribution of satellites is dependent on both microtubule integrity and molecular motor activities. Our results suggest that FOR20 could be involved in regulating the interaction of PCM1 satellites with microtubules and motors. The role of FOR20 in primary cilium formation could therefore be linked to its function in regulating pericentriolar satellites. A role for FOR20 at the basal body itself is also discussed.
Although adult neurogenesis has now been demonstrated in many different species, the functional role of newborn neurons still remains unclear. In the house cricket, a cluster of neuroblasts, located in the main associative center of the insect brain, keeps producing new interneurons throughout the animal's life. Here we address the functional significance of adult neurogenesis by specific suppression of neuroblast proliferation using gamma irradiation of the insect's head and by examining the impact on the insect's learning ability. Forty gray irradiation performed on the first day of adult life massively suppressed neuroblasts and their progeny without inducing any noticeable side effect. We developed a new operant conditioning paradigm especially designed for crickets: the "escape paradigm." Using olfactory cues, visual cues, or both, crickets had to choose between two holes, one allowing them to escape and the other leading to a trap. Crickets lacking adult neurogenesis exhibited delayed learning when olfactory cues alone were used. Furthermore, retention 24 hr after conditioning was strongly impaired in irradiated crickets. By contrast, when visual cues instead of olfactory ones were provided, performance of irradiated insects was only slightly affected; when both olfactory and visual cues were present, their performance was not different from that of controls. From these results, it can be postulated that newborn neurons participate in the processing of olfactory information required for complex operant conditioning.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.