Since the isolation of graphene in 2004, there has been an exponentially growing number of reports on layered two-dimensional (2D) materials for applications ranging from protective coatings to biochemical sensing. Due to the exceptional, and often tunable, electrical, optical, electrochemical, and physical properties of these materials, they can serve as the active sensing element or a supporting substrate for diverse healthcare applications. In this review, we provide a survey of the recent reports on the applications of 2D materials in biosensing and other emerging healthcare areas, ranging from wearable technologies to optogenetics to neural interfacing. Specifically, this review provides (i) a holistic evaluation of relevant material properties across a wide range of 2D systems, (ii) a comparison of 2D material-based biosensors to the state-of-the-art, (iii) relevant material synthesis approaches specifically reported for healthcare applications, and (iv) the technological considerations to facilitate mass production and commercialization.
Since their modern debut in 2004, 2-dimensional (2D) materials continue to exhibit scientific and industrial promise, providing a broad materials platform for scientific investigation, and development of nano-and atomic-scale devices. A significant focus of the last decade's research in this field has been 2D semiconductors, whose electronic properties can be tuned through manipulation of dimensionality, substrate engineering, strain, and doping. 1-8 2D semiconductors such as molybdenum disulfide (MoS2) and tungsten diselenide (WSe2) have dominated recent interest for potential integration in electronic technologies, due to their intrinsic and tunable properties, atomic-scale thicknesses, and relative ease of stacking to create new and custom structures. However, to go "beyond the bench", advances in large-scale, 2D layer synthesis and engineering must lead to "exfoliation-quality" 2D layers at the wafer scale. This roadmap aims to address this grand challenge by identifying key technology drivers where 2D layers can have an impact, and to discuss synthesis and layer engineering for the realization of electronic-grade, 2D materials. We focus on three fundamental areas of research that must be heavily pursued in both experiment and computation to achieve high-quality materials for electronic and optoelectronic applications. The document is organized as follows:
Two-dimensional transition metal dichalcogenides (TMDs) emerged as a promising platform to construct sensitive biosensors. We report an ultrasensitive electrochemical dopamine sensor based on manganese-doped MoS2 synthesized via a scalable two-step approach (with Mn ~2.15 atomic %). Selective dopamine detection is achieved with a detection limit of 50 pM in buffer solution, 5 nM in 10% serum, and 50 nM in artificial sweat. Density functional theory calculations and scanning transmission electron microscopy show that two types of Mn defects are dominant: Mn on top of a Mo atom (MntopMo) and Mn substituting a Mo atom (MnMo). At low dopamine concentrations, physisorption on MnMo dominates. At higher concentrations, dopamine chemisorbs on MntopMo, which is consistent with calculations of the dopamine binding energy (2.91 eV for MntopMo versus 0.65 eV for MnMo). Our results demonstrate that metal-doped layered materials, such as TMDs, constitute an emergent platform to construct ultrasensitive and tunable biosensors.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.