BackgroundRenin-angiotensin system (RAS) signaling and angiotensin-converting enzyme 2 (ACE2) have been implicated in the pathogenesis of acute respiratory distress syndrome (ARDS). We postulated that repleting ACE2 using GSK2586881, a recombinant form of human angiotensin-converting enzyme 2 (rhACE2), could attenuate acute lung injury.MethodsWe conducted a two-part phase II trial comprising an open-label intrapatient dose escalation and a randomized, double-blind, placebo-controlled phase in ten intensive care units in North America. Patients were between the ages of 18 and 80 years, had an American-European Consensus Criteria consensus diagnosis of ARDS, and had been mechanically ventilated for less than 72 h. In part A, open-label GSK2586881 was administered at doses from 0.1 mg/kg to 0.8 mg/kg to assess safety, pharmacokinetics, and pharmacodynamics. Following review of data from part A, a randomized, double-blind, placebo-controlled investigation of twice-daily doses of GSK2586881 (0.4 mg/kg) for 3 days was conducted (part B). Biomarkers, physiological assessments, and clinical endpoints were collected over the dosing period and during follow-up.ResultsDose escalation in part A was well-tolerated without clinically significant hemodynamic changes. Part B was terminated after 39 of the planned 60 patients following a planned futility analysis. Angiotensin II levels decreased rapidly following infusion of GSK2586881, whereas angiotensin-(1–7) and angiotensin-(1–5) levels increased and remained elevated for 48 h. Surfactant protein D concentrations were increased, whereas there was a trend for a decrease in interleukin-6 concentrations in rhACE2-treated subjects compared with placebo. No significant differences were noted in ratio of partial pressure of arterial oxygen to fraction of inspired oxygen, oxygenation index, or Sequential Organ Failure Assessment score.ConclusionsGSK2586881 was well-tolerated in patients with ARDS, and the rapid modulation of RAS peptides suggests target engagement, although the study was not powered to detect changes in acute physiology or clinical outcomes.Trial registrationClinicalTrials.gov, NCT01597635. Registered on 26 January 2012.Electronic supplementary materialThe online version of this article (doi:10.1186/s13054-017-1823-x) contains supplementary material, which is available to authorized users.
Although 3':5' cyclic adenosine monophosphate (cAMP) is known to modulate cytokine production in a number of cell types, little information exists regarding cAMP-mediated effects on this synthetic function of human airway smooth-muscle (HASM) cells. We examined the effect of increasing intracellular cAMP concentration ([cAMP](i)) on tumor necrosis factor (TNF)-alpha-induced regulated on activation, normal T cells expressed and secreted (RANTES) and interleukin (IL)-6 secretion from cultured HASM cells. Pretreatment of HASM with prostaglandin (PG) E(2), forskolin, or dibutyryl cAMP inhibited TNF-alpha-induced RANTES secretion but increased TNF-alpha-induced IL-6 secretion. Moreover, stimulation with PGE(2), forskolin, or dibutyryl cAMP alone increased basal IL-6 secretion in a concentration-dependent manner. SB 207499, a specific phosphodiesterase type 4 inhibitor, augmented the inhibitory effects of PGE(2) and forskolin on TNF-alpha-induced RANTES. Collectively, these data demonstrate that increasing [cAMP](i) in HASM effectively increases IL-6 secretion but reduces RANTES secretion promoted by TNF-alpha. Reverse transcriptase/polymerase chain reaction and ribonuclease protection assays suggested that these opposite effects of increased [cAMP](i) on TNF-alpha- induced IL-6 and RANTES secretion may occur at the transcriptional level. Accordingly, we examined the effects of TNF- alpha and cAMP on the regulation of nuclear factor (NF)-kappaB, a transcription factor known to modulate cytokine synthesis in numerous cell types. Stimulation of HASM cells with TNF-alpha increased NF-kappaB DNA-binding activity. However, increased [cAMP](i) in HASM neither activated NF-kappaB nor altered TNF-alpha- induced NF-kappaB DNA-binding activity. These results were confirmed using a NF-kappaB-luciferase reporter assay. Together, our data suggest that TNF-alpha-induced IL-6 and RANTES secretion may be associated with NF-kappaB activation, and that inhibition of TNF-alpha-stimulated RANTES secretion and augmentation of IL-6 secretion by increased [cAMP](i) in HASM cells occurs via an NF-kappaB-independent mechanism.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.