Senescent cells (SCs) accumulate with age and after genotoxic stress, such as total-body irradiation (TBI)1–6. Clearance of SCs in a progeroid mouse model using a transgenic approach delays several age-associated disorders7, suggesting that SCs play a causative role in certain age-related pathologies. Thus, a ‘senolytic’ pharmacological agent that can selectively kill SCs holds promise for rejuvenating tissue stem cells and extending health span. To test this idea, we screened a collection of compounds and identified ABT263 (a specific inhibitor of the anti-apoptotic proteins BCL-2 and BCL-xL) as a potent senolytic drug. We show that ABT263 selectively kills SCs in culture in a cell type– and species-independent manner by inducing apoptosis. Oral administration of ABT263 to either sublethally irradiated or normally aged mice effectively depleted SCs, including senescent bone marrow hematopoietic stem cells (HSCs) and senescent muscle stem cells (MuSCs). Notably, this depletion mitigated TBI-induced premature aging of the hematopoietic system and rejuvenated the aged HSCs and MuSCs in normally aged mice. Our results demonstrate that selective clearance of SCs by a pharmacological agent is beneficial in part through its rejuvenation of aged tissue stem cells. Thus, senolytic drugs may represent a new class of radiation mitigators and anti-aging agents.
Ionizing radiation (IR) and/or chemotherapy cause not only acute tissue damage but also late effects including long-term (or residual) bone marrow (BM) injury. The induction of residual BM injury is primarily attributable to the induction of hematopoietic stem cell (HSC) senescence. However, neither the molecular mechanisms by which IR and/or chemotherapy induce HSC senescence have been clearly defined, nor has an effective treatment been developed to ameliorate the injury. Thus, they were investigated in the present study. The results from this study showed that exposure of mice to a sublethal dose total body irradiation (TBI) induced a persistent increase in reactive oxygen species (ROS) production in HSCs only. The induction of chronic oxidative stress in HSCs was associated with sustained increases in oxidative DNA damage, DNA double strand breaks (DSBs), inhibition of HSC clonogenic function, and induction of HSC senescence but not apoptosis. Treatment of the irradiated mice with N-acetyl-cysteine (NAC) after TBI significantly attenuated IR-induced inhibition of HSC clonogenic function and reduction of HSC long-term engraftment after transplantation. The induction of chronic oxidative stress in HSCs by TBI is likely attributed to the up-regulation of NADPH oxidase 4 (NOX4), because irradiated HSCs expressed an increased level of NOX4 and inhibition of NOX activity with diphenylene iodonium (DPI) but not apocynin significantly reduced TBI-induced increases in ROS production, oxidative DNA damage, and DNA DSBs in HSCs, and dramatically improved HSC clonogenic function. These findings provide the foremost direct evidence demonstrating that TBI selectively induces chronic oxidative stress in HSCs at least in part via up-regulation of NOX4, which leads to the induction of HSC senescence and residual BM injury.
Gold nanoparticles have potential applications in biomedicine, but one of the important concerns is about their safety. Most toxicology data are derived from in vitro studies and may not reflect in vivo responses. Here, an animal toxicity study of 13.5 nm gold nanoparticles in mice is presented. Animal survival, weight, hematology, morphology, and organ index are characterized at different concentrations (137.5-2200 µg/kg) over 14-28 days. The results show that low concentrations of gold nanoparticles do not cause an obvious decrease in body weight or appreciable toxicity, even after their breakdown in vivo. High concentrations of gold nanoparticles induced decreases in body weight, red blood cells, and hematocrit. It was also found that gold nanoparticles administered orally caused significant decreases in body weight, spleen index, and red blood cells. Of the three administration routes, the oral and intraperitoneal routes showed the highest toxicity, and the tail vein injection showed the lowest toxicity. Combining the results of all of these studies, we suggest that targeted gold nanopartices by tail vein injection may be suitable for enhancement of radiotherapy, photothermal therapy, and related medical diagnostic procedures.
• Total body irradiation causes long-term bone marrow suppression by selectively inducing HSC senescence.• The induction of HSC senescence is independent of telomere shortening and p16 Ink4a and Arf.Exposure to total body irradiation (TBI) induces not only acute hematopoietic radiation syndrome but also long-term or residual bone marrow (BM) injury. This residual BM injury is mainly attributed to permanent damage to hematopoietic stem cells (HSCs), including impaired self-renewal, decreased long-term repopulating capacity, and myeloid skewing. These HSC defects were associated with significant increases in production of reactive oxygen species (ROS), expression of p16 Ink4a (p16) and Arf mRNA, and senescenceassociated b-galacotosidase (SA-b-gal) activity, but not with telomere shortening or increased apoptosis, suggesting that TBI induces residual BM injury via induction of HSC premature senescence. This suggestion is supported by the finding that SA-b-gal 1 HSCenriched LSK cells showed more pronounced defects in clonogenic activity in vitro and long-term engraftment after transplantation than SA-b-gal -LSK cells isolated from irradiated mice. However, genetic deletion of p16 and/or Arf had no effect on TBI-induced residual BM suppression and HSC senescence, because HSCs from irradiated p16 and/or Arf knockout (KO) mice exhibited changes similar to those seen in HSCs from wild-type mice after exposure to TBI. These findings provide important new insights into the mechanism by which TBI causes long-term BM suppression (eg, via induction of premature senescence of HSCs in a p16-Arf-independent manner). (Blood. 2014;123(20):3105-3115)
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.