The Atlantic thermohaline circulation (THC) is an important part of the earth's climate system. Previous research has shown large uncertainties in simulating future changes in this critical system. The simulated THC response to idealized freshwater perturbations and the associated climate changes have been intercompared as an activity of World Climate Research Program (WCRP) Coupled Model Intercomparison Project/Paleo-Modeling Intercomparison Project (CMIP/PMIP) committees. This intercomparison among models ranging from the earth system models of intermediate complexity (EMICs) to the fully coupled atmosphere-ocean general circulation models (AOGCMs) seeks to document and improve understanding of the causes of the wide variations in the modeled THC response. The robustness of particular simulation features has been evaluated across the model results. In response to 0.1-Sv (1 Sv ϵ 10 6 m 3 s Ϫ1) freshwater input in the northern North Atlantic, the multimodel ensemble mean THC weakens by 30% after 100 yr. All models simulate some weakening of the THC, but no model simulates a complete shutdown of the THC. The multimodel ensemble indicates that the surface air temperature could present a complex anomaly pattern with cooling south of Greenland and warming over the Barents and Nordic Seas. The Atlantic ITCZ tends to shift southward. In response to 1.0-Sv freshwater input, the THC switches off rapidly in all model simulations. A large cooling occurs over the North Atlantic. The annual mean Atlantic ITCZ moves into the Southern Hemisphere. Models disagree in terms of the reversibility of the THC after its shutdown. In general, the EMICs and AOGCMs obtain similar THC responses and climate changes with more pronounced and sharper patterns in the AOGCMs.
In the future, Arctic warming and the melting of polar glaciers will be considerable, but the magnitude of both is uncertain. We used a global climate model, a dynamic ice sheet model, and paleoclimatic data to evaluate Northern Hemisphere high-latitude warming and its impact on Arctic icefields during the Last Interglaciation. Our simulated climate matches paleoclimatic observations of past warming, and the combination of physically based climate and ice-sheet modeling with icecore constraints indicate that the Greenland Ice Sheet and other circum-Arctic ice fields likely contributed 2.2 to 3.4 meters of sea-level rise during the Last Interglaciation.
[1] As part of the Coupled Model Intercomparison Project, integrations with a common design have been undertaken with eleven different climate models to compare the response of the Atlantic thermohaline circulation (THC) to time-dependent climate change caused by increasing atmospheric CO 2 concentration. Over 140 years, during which the CO 2 concentration quadruples, the circulation strength declines gradually in all models, by between 10 and 50%. No model shows a rapid or complete collapse, despite the fairly rapid increase and high final concentration of CO 2 . The models having the strongest overturning in the control climate tend to show the largest THC reductions. In all models, the THC weakening is caused more by changes in surface heat flux than by changes in surface water flux. No model shows a cooling anywhere, because the greenhouse warming is dominant. Citation: Gregory, J. M., et al. (2005), A model intercomparison of changes in the Atlantic thermohaline circulation in response to increasing atmospheric CO 2 concentration, Geophys. Res. Lett., 32, L12703,
tral case). For the CE commitment, sea level rises at about 25 cm/century (uncertainty range, 7 to more than 50 cm/century). The fractions arising from unforced contributions to sea level rise are less than those in the CC case.The CE results reinforce the common knowledge that, in order to stabilize globalmean temperatures, we eventually need to reduce emissions of greenhouse gases to well below present levels (21). The CC results are potentially more alarming, because they are based on a future scenario that is clearly impossible to achieve and so represent an extreme lower bound to climate change over the next few centuries. For temperature, they show that the inertia of the climate system alone will guarantee continued warming and that this warming may eventually exceed 1-C. For sea level, a continued rise of about 10 cm/century for many centuries is the best estimate. Although such a slow rate may allow many coastal communities to adapt, profound long-term impacts on low-lying island communities and on vulnerable ecosystems (such as coral reefs) seem inevitable.References and Notes 1. M. L. Hoffert, A. J. Callegari, C.-T. Hsieh, J. Geophys. Res. 86, 6667 (1980). 2. J. Hansen et al., Science 229, 857 (1985 Two global coupled climate models show that even if the concentrations of greenhouse gases in the atmosphere had been stabilized in the year 2000, we are already committed to further global warming of about another half degree and an additional 320% sea level rise caused by thermal expansion by the end of the 21st century. Projected weakening of the meridional overturning circulation in the North Atlantic Ocean does not lead to a net cooling in Europe. At any given point in time, even if concentrations are stabilized, there is a commitment to future climate changes that will be greater than those we have already observed.Increases of greenhouse gases (GHGs) in the atmosphere produce a positive radiative forcing of the climate system and a consequent warming of surface temperatures and rising sea level caused by thermal expansion of the warmer seawater, in addition to the contribution from melting glaciers and ice sheets (1, 2). If concentrations of GHGs could be stabilized at some level, the thermal inertia of the climate system would still result in further increases in temperatures, and sea level would continue to rise (2-9). We performed multimember ensemble simulations with two global coupled three-dimensional climate models to quantify how much more global warming and sea level rise (from thermal expansion) we could experience under several different scenarios. The Parallel Climate Model (PCM) has been used extensively for climate change experiments (10)(11)(12)(13)(14)(15). This model has a relatively low climate sensitivity as compared to other models, with an equilibrium climate sensitivity of 2
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.