A recently discovered satiety molecule, nesfatin-1, is localized in neurons of the hypothalamus and brain stem and colocalized with stress-related substances, corticotropin-releasing hormone (CRH), oxytocin, proopiomelanocortin, noradrenaline (NA) and 5-hydroxytryptamine (5-HT). Intracerebroventricular (icv) administration of nesfatin-1 produces fear-related behaviors and potentiates stressor-induced increases in plasma adrenocorticotropic hormone (ACTH) and corticosterone levels in rats. These findings suggest a link between nesfatin-1 and stress. In the present study, we aimed to further clarify the neuronal network by which nesfatin-1 could induce stress responses in rats. Restraint stress induced c-Fos expressions in nesfatin-1-immunoreactive neurons in the paraventricular nucleus (PVN) and supraoptic nucleus (SON) of the hypothalamus, and in the nucleus of solitary tract (NTS), locus coeruleus (LC) and dorsal raphe nucleus (DR) in the brain stem, without altering plasma nesfatin-1 levels. Icv nesfatin-1 induced c-Fos expressions in the PVN, SON, NTS, LC, DR and median raphe nucleus, including PVN-CRH, NTS-NA, LC-NA and DR-5-HT neurons. Nesfatin-1 increased cytosolic Ca2+ concentration in the CRH-immunoreactive neurons isolated from PVN. Icv nesfatin-1 increased plasma ACTH and corticosterone levels. These results indicate that the central nesfatin-1 system is stimulated by stress and activates CRH, NA and 5-HT neurons and hypothalamic-pituitary-adrenal axis, evoking both central and peripheral stress responses.
Insulin secretion from pancreatic islet β-cells is stimulated by glucose. Glucose-induced insulin release is potentiated or suppressed by hormones and neural substances. Ghrelin, an acylated 28-amino acid peptide, was isolated from the stomach in 1999 as the endogenous ligand for the growth hormone (GH) secretagogue-receptor (GHS-R). Circulating ghrelin is produced predominantly in the stomach and to a lesser extent in the intestine, pancreas and brain. Ghrelin, initially identified as a potent stimulator of GH release and feeding, has been shown to suppress glucose-induced insulin release. This insulinostatic action is mediated by Gα i2 subtype of GTP-binding proteins and delayed outward K + (Kv) channels. Interestingly, ghrelin is produced in pancreatic islets. The ghrelin originating from islets restricts insulin release and thereby upwardly regulates the systemic glucose level. Furthermore, blockade or elimination of ghrelin enhances insulin release, which can ameliorate glucose intolerance in high-fat diet fed mice and ob/ob mice. This review focuses on the insulinostatic action of ghrelin, its signal transduction mechanisms in islet β-cells, ghrelin's status as an islet hormone, physiological roles of ghrelin in regulating systemic insulin levels and glycaemia, and therapeutic potential of the ghrelin-GHS-R system as the target to treat type 2 diabetes.
Diurnal fluctuations in glucose levels continuously monitored during normal daily life are investigated using an extended random walk analysis, referred to as detrended fluctuation analysis (DFA), in 12 nondiabetic subjects and 15 diabetic patients. The DFA exponent alpha = 1.25 +/- 0.29 for healthy individuals in the "long-range" (>2 h) regime is shown to be significantly (P < 0.01) smaller than the reference "uncorrelated" value of alpha = 1.5, suggesting that the instantaneous net effects of the dynamical balance of glucose flux and reflux, causing temporal changes in glucose concentration, are long-range negatively correlated. By contrast, in diabetic patients, the DFA exponent alpha = 1.65 +/- 0.30 is significantly (P < 0.05) higher than that in nondiabetic subjects, evidencing a breakdown of the long-range negative correlation. It is suggested that the emergence of such positive long-range glucose correlations in diabetic patients-indicating that the net effects of the flux and reflux persist for many hours-likely reflects pathogenic mechanisms of diabetes, i.e., the lack of long-term stability of blood glucose and that the long-range negatively correlated glucose dynamics are functional in maintaining normal glucose homeostasis.
Such long-range positive correlation in glucose homeostasis may reflect pathogenic mechanisms of diabetes, i.e., the lack of the tight control in blood glucose regulation. Using modern time series analysis methods such as DFA, continuous evaluation of glucose dynamics could promote better diagnoses and prognoses of diabetes and a better understanding of the fundamental mechanism of glucose dysregulation in diabetes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.