The advantages of using induced pluripotent stem cells (iPSCs) instead of embryonic stem (ES) cells in regenerative medicine centre around circumventing concerns about the ethics of using ES cells and the likelihood of immune rejection of ES-cell-derived tissues. However, partial reprogramming and genetic instabilities in iPSCs could elicit immune responses in transplant recipients even when iPSC-derived differentiated cells are transplanted. iPSCs are first differentiated into specific types of cells in vitro for subsequent transplantation. Although model transplantation experiments have been conducted using various iPSC-derived differentiated tissues and immune rejections have not been observed, careful investigation of the immunogenicity of iPSC-derived tissue is becoming increasingly critical, especially as this has not been the focus of most studies done so far. A recent study reported immunogenicity of iPSC- but not ES-cell-derived teratomas and implicated several causative genes. Nevertheless, some controversy has arisen regarding these findings. Here we examine the immunogenicity of differentiated skin and bone marrow tissues derived from mouse iPSCs. To ensure optimal comparison of iPSCs and ES cells, we established ten integration-free iPSC and seven ES-cell lines using an inbred mouse strain, C57BL/6. We observed no differences in the rate of success of transplantation when skin and bone marrow cells derived from iPSCs were compared with ES-cell-derived tissues. Moreover, we observed limited or no immune responses, including T-cell infiltration, for tissues derived from either iPSCs or ES cells, and no increase in the expression of the immunogenicity-causing Zg16 and Hormad1 genes in regressing skin and teratoma tissues. Our findings suggest limited immunogenicity of transplanted cells differentiated from iPSCs and ES cells.
SOX9 is a transcription factor that plays a key role in chondrogenesis. Aggrecan is one of the major structural components in cartilage; however, the molecular mechanism of aggrecan gene regulation has not yet been fully elucidated. TC6 is a clonal chondrocytic cell line derived from articular cartilage. The purpose of this study was to examine whether SOX9 modulates aggrecan gene expression and to further identify molecules that regulate Sox9 expression in TC6 cells. SOX9 overexpression in TC6 cells enhanced by ϳ3-fold the transcriptional activity of the AgCAT-8 construct containing 8-kilobase (kb) promoter/ first exon/first intron fragments of the aggrecan gene. SOX9 enhancement of aggrecan promoter activity was lost when we deleted a 4.5-kb fragment from the 3-end of the 8-kb fragment corresponding to the region including the first intron. In TC6 cells, SOX9 enhanced the transcriptional activity of a reporter construct containing the Sry/Sox consensus sequence >10-fold. SOX9 enhancement of aggrecan gene promoter activity and SOX9 transactivation through the Sry/Sox consensus sequence were not observed in osteoblastic osteosarcoma cells (ROS17/2.8), indicating the dependence on the cellular background. Northern blot analysis indicated that TC6 cells constitutively express Sox9 mRNA at relatively low levels. To examine regulation of Sox9 gene expression, we investigated the effects of calciotropic hormones and cytokines. Among these, retinoic acid (RA) specifically enhanced Sox9 mRNA expression in TC6 cells. The basal levels of Sox9 expression and its enhancement by RA were observed similarly at both permissive (33°C) and nonpermissive (39°C) temperatures. Furthermore, RA treatment enhanced the transcriptional activity of a reporter construct containing the Sry/Sox consensus sequence in TC6 cells. Moreover, RA treatment also enhanced the transcriptional activity of another reporter construct containing the enhancer region of the type II procollagen gene in TC6 cells. These observations indicate that SOX9 enhances aggrecan promoter activity and that its expression is up-regulated by RA in TC6 cells.Sox9 is a member of the family of Sox (Sry-type high mobility group box) genes that were first identified on the basis of a region with high homology to that of Sry (sex-determining region Y) (1). This region encodes a 79-amino acid motif that is known as a high mobility group box and is responsible for sequence-specific binding to DNA (2, 3). Several high mobility group box proteins are known to act as transcription factors (4), and some of the Sox genes have been shown to be expressed in a tissue-specific manner during development. SOX9 is expressed predominantly in cells in mesenchymal condensations during the early development of skeletons in embryos (5). These SOX9-expressing regions coincide with those where deposition of cartilage matrix takes place, suggesting a role for SOX9 in skeletal formation (6 -8). In addition, mutations in human SOX9 have been observed in patients with campomelic dysplasia that is char...
Reduced mechanical stress to bone in bedridden patients and astronauts leads to bone loss and increase in fracture risk which is one of the major medical and health issues in modern aging society and space medicine. However, no molecule involved in the mechanisms underlying this phenomenon has been identified to date. Osteopontin (OPN) is one of the major noncollagenous proteins in bone matrix, but its function in mediating physical-force effects on bone in vivo has not been known. To investigate the possible requirement for OPN in the transduction of mechanical signaling in bone metabolism in vivo, we examined the effect of unloading on the bones of OPN−/− mice using a tail suspension model. In contrast to the tail suspension–induced bone loss in wild-type mice, OPN−/− mice did not lose bone. Elevation of urinary deoxypyridinoline levels due to unloading was observed in wild-type but not in OPN−/− mice. Analysis of the mechanisms of OPN deficiency–dependent reduction in bone on the cellular basis resulted in two unexpected findings. First, osteoclasts, which were increased by unloading in wild-type mice, were not increased by tail suspension in OPN−/− mice. Second, measures of osteoblastic bone formation, which were decreased in wild-type mice by unloading, were not altered in OPN−/− mice. These observations indicate that the presence of OPN is a prerequisite for the activation of osteoclastic bone resorption and for the reduction in osteoblastic bone formation in unloaded mice. Thus, OPN is a molecule required for the bone loss induced by mechanical stress that regulates the functions of osteoblasts and osteoclasts.
Rheumatoid arthritis is one of the most critical diseases that impair the quality of life of patients, but its pathogenesis has not yet been fully understood. Osteopontin (OPN) is an extracellular matrix protein containing Arg-Gly-Asp (RGD) sequence, which interacts with ␣v3 integrins, promotes cell attachment, and cell migration and is expressed in both synovial cells and chondrocytes in rheumatoid arthritis; however, its functional relationship to arthritis has not been known. Therefore, we investigated the roles of OPN in the pathogenesis of inflammatory process in a rheumatoid arthritis model induced by a mixture of anti-type II collagen mAbs and lipopolysaccharide (mAbs͞LPS). mAbs͞LPS injection induced OPN expression in synovia as well as cartilage, and this expression was associated with joint swelling, destruction of the surface structures of the joint based on scanning electron microscopy, and loss of toluidine blue-positive proteoglycan content in the articular cartilage in wild-type mice. In contrast, OPN deficiency prevented the mice from such surface destruction, loss of proteoglycan in the articular joint cartilage, and swelling of the joints even when the mice were subjected to mAbs͞ LPS injection. Furthermore, mAbs͞LPS injection in wild-type mice enhanced the levels of CD31-positive vessels in synovia and terminal deoxynucleotidyltransferase-mediated UTP end labeling-positive chondrocytes in the articular cartilage, whereas such angiogenesis as well as chondrocyte apoptosis was suppressed significantly in OPNdeficient mice. These results indicated that OPN plays a critical role in the destruction of joint cartilage in the rheumatoid arthritis model in mice via promotion of angiogenesis and induction of chondrocyte apoptosis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.