Opposing parasympathetic and sympathetic signals determine the autonomic output of the brain to the body and the change in balance over the sleep-wake cycle. The suprachiasmatic nucleus (SCN) organizes the activity/inactivity cycle and the behaviors that go along with it, but it is unclear how the hypothalamus, in particular the SCN, with its high daytime electrical activity, influences this differentiated autonomic balance. In a first series of experiments, we visualized hypothalamic pre-sympathetic neurons by injecting the retrograde tracer Fluoro-Gold into the thoracic sympathetic nuclei of the spinal cord. Pre-parasympathetic neurons were revealed by injection of the retrograde trans-synaptic tracer pseudorabies virus (PRV) into the liver and by sympathetic liver denervation, forcing the virus to infect via the vagus nerve only. This approach revealed separate pre-sympathetic and pre-parasympathetic neurons in the brainstem and hypothalamus. Next, selective retrograde tracing with two unique reporter PRV strains, one injected into the adrenal and the other into the sympathetic denervated liver, demonstrated that there are two separate populations of pre-sympathetic and pre-parasympathetic neurons within the paraventricular nucleus of the hypothalamus. Interestingly, this segregation persists into the SCN, where, as a result, the day-night balance in autonomic function of the organs is affected by specialized pre-sympathetic or pre-parasympathetic SCN neurons. These separate preautonomic SCN neurons provide the anatomical basis for the circadian-driven regulation of the parasympathetic and sympathetic autonomic output.
Peptide YY (PYY), an anorectic peptide, is secreted postprandially from the distal gastrointestinal tract. PYY(3-36), the major form of circulating PYY, binds to the hypothalamic neuropeptide Y Y2 receptor (Y2-R) with a high-affinity, reducing food intake in rodents and humans. Additional gastrointestinal hormones involved in feeding, including cholecystokinin, glucagon-like peptide 1, and ghrelin, transmit satiety or hunger signals to the brain via the vagal afferent nerve and/or the blood stream. Here we determined the role of the afferent vagus nerve in PYY function. Abdominal vagotomy abolished the anorectic effect of PYY(3-36) in rats. Peripheral administration of PYY(3-36) induced Fos expression in the arcuate nucleus of sham-operated rats but not vagotomized rats. We showed that Y2-R is synthesized in the rat nodose ganglion and transported to the vagal afferent terminals. PYY(3-36) stimulated firing of the gastric vagal afferent nerve when administered iv. Considering that Y2-R is present in the vagal afferent fibers, PYY(3-36) could directly alter the firing rate of the vagal afferent nerve via Y2-R. We also investigated the effect of ascending fibers from the nucleus of the solitary tract on the transmission of PYY(3-36)-mediated satiety signals. In rats, bilateral midbrain transections rostral to the nucleus of the solitary tract also abolished PYY(3-36)-induced reductions in feeding. This study indicates that peripheral PYY(3-36) may transmit satiety signals to the brain in part via the vagal afferent pathway.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.