Many biochemical, physiological and behavioural processes show circadian rhythms which are generated by an internal time-keeping mechanism referred to as the biological clock. According to rapidly developing models, the core oscillator driving this clock is composed of an autoregulatory transcription-(post) translation-based feedback loop involving a set of 'dock' genes. Molecular clocks do not oscillate with an exact 24-hour rhythmicity but are entrained to solar day/night rhythms by light. The mammalian proteins Cryl and Cry2, which are members of the family of plant blue-light receptors (cryptochromes) and photolyases, have been proposed as candidate light receptors for photoentrainment of the biological clock. Here we show that mice lacking the Cryl or Cry2 protein display accelerated and delayed free-running periodicity of locomotor activity, respectively. Strikingly, in the absence of both proteins, an instantaneous and complete loss of free-running rhythmicity is observed. This suggests that, in addition to a possible photoreceptor and antagonistic clock-adjusting function, both proteins are essential for the maintenance of circadian rhythmicity.
Oxidative DNA damage causes blocks and errors in transcription and replication, leading to cell death and genomic instability. Although repair mechanisms of the damage have been extensively analyzed in vitro, the actual in vivo repair processes remain largely unknown. Here, by irradiation with an UVA laser through a microscope lens, we have conditionally produced single-strand breaks and oxidative base damage at restricted nuclear regions of mammalian cells. We showed, in real time after irradiation by using antibodies and GFP-tagged proteins, rapid and ordered DNA repair processes of oxidative DNA damage in human cells. Furthermore, we characterized repair pathways by using repair-defective mammalian cells and found that DNA polymerase  accumulated at single-strand breaks and oxidative base damage by means of its 31-and 8-kDa domains, respectively, and that XRCC1 is essential for both polymerase -dependent and proliferating cell nuclear antigen-dependent repair pathways of single-strand breaks. Thus, the repair of oxidative DNA damage is based on temporal and functional interactions among various proteins operating at the site of DNA damage in living cells.
Non-homologous end joining (NHEJ) is a major repair pathway for DNA double-strand breaks (DSBs) generated by ionizing radiation (IR) and anti-cancer drugs. Therefore, inhibiting the activity of proteins involved in this pathway is a promising way of sensitizing cancer cells to both radiotherapy and chemotherapy. In this study, we developed an assay for evaluating NHEJ activity against DSBs in chromosomal DNA in human cells to identify the chromatin modification/remodeling proteins involved in NHEJ. We showed that ablating the activity of the homologous histone acetyltransferases, CBP and p300, using inhibitors or small interfering RNAs-suppressed NHEJ. Ablation of CBP or p300 impaired IR-induced DSB repair and sensitized lung cancer cells to IR and the anti-cancer drug, etoposide, which induces DSBs that are repaired by NHEJ. The CBP/p300 proteins were recruited to sites of DSBs and their ablation suppressed acetylation of lysine 18 within histone H3, and lysines 5, 8, 12, and 16 within histone H4, at the DSB sites. This then suppressed the recruitment of KU70 and KU80, both key proteins for NHEJ, to the DSB sites. Ablation of CBP/p300 also impaired the recruitment of BRM, a catalytic subunit of the SWI/SNF complex involved in chromatin remodeling at DSB sites. These results indicate that CBP and p300 function as histone H3 and H4 acetyltransferases at DSB sites in NHEJ and facilitate chromatin relaxation. Therefore, inhibition CBP and p300 activity may sensitize cancer cells to radiotherapy and chemotherapy.
DNA double-strand breaks (DSBs) are repaired via nonhomologous end-joining (NHEJ) or homologous recombination (HR), but cellular repair processes remain elusive. We show here that the ATP-dependent chromatin-remodeling factors, ACF1 and SNF2H, accumulate rapidly at DSBs and are required for DSB repair in human cells. If the expression of ACF1 or SNF2H is suppressed, cells become extremely sensitive to X-rays and chemical treatments producing DSBs, and DSBs remain unrepaired. ACF1 interacts directly with KU70 and is required for the accumulation of KU proteins at DSBs. The KU70/80 complex becomes physically more associated with the chromatin-remodeling factors of the CHRAC complex, which includes ACF1, SNF2H, CHRAC15, and CHRAC17, after treatments producing DSBs. Furthermore, the frequency of NHEJ as well as HR induced by DSBs in chromosomal DNA is significantly decreased in cells depleted of either of these factors. Thus, ACF1 and its complexes play important roles in DSBs repair.
The crystal structure at 1.8 A resolution of 8-HDF type photolyase from A. nidulans shows a backbone structure similar to that of MTHF type E. coli photolyase but reveals a completely different binding site for the light-harvesting cofactor.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.