Alveolar hypoxia is the most prominent feature of high altitude environment with well-known consequences for the cardio-pulmonary system, including development of pulmonary hypertension. Pulmonary hypertension due to an exaggerated hypoxic pulmonary vasoconstriction contributes to high altitude pulmonary edema (HAPE), a life-threatening disorder, occurring at high altitudes in non-acclimatized healthy individuals. Despite a strong physiologic rationale for using vasodilators for prevention and treatment of HAPE, no systematic studies of their efficacy have been conducted to date. Calcium-channel blockers are currently recommended for drug prophylaxis in high-risk individuals with a clear history of recurrent HAPE based on the extensive clinical experience with nifedipine in HAPE prevention in susceptible individuals. Chronic exposure to hypoxia induces pulmonary vascular remodeling and development of pulmonary hypertension, which places an increased pressure load on the right ventricle leading to right heart failure. Further, pulmonary hypertension along with excessive erythrocytosis may complicate chronic mountain sickness, another high altitude maladaptation disorder. Importantly, other causes than hypoxia may potentially underlie and/or contribute to pulmonary hypertension at high altitude, such as chronic heart and lung diseases, thrombotic or embolic diseases. Extensive clinical experience with drugs in patients with pulmonary arterial hypertension suggests their potential for treatment of high altitude pulmonary hypertension. Small studies have demonstrated their efficacy in reducing pulmonary artery pressure in high altitude residents. However, no drugs have been approved to date for the therapy of chronic high altitude pulmonary hypertension. This work provides a literature review on the role of pulmonary hypertension in the pathogenesis of acute and chronic high altitude maladaptation disorders and summarizes current knowledge regarding potential treatment options.
Tuberculous sputum contains multiple Mycobacterium tuberculosis populations with different requirements for isolation in vitro. These include cells that form colonies on solid media (plateable M. tuberculosis), cells requiring standard liquid medium for growth (nonplateable M. tuberculosis), and cells requiring supplementation of liquid medium with culture supernatant (SN) for growth (SN-dependent M. tuberculosis). Here, we describe protocols for the cryopreservation and direct assessment of antimicrobial tolerance of these M. tuberculosis populations within sputum. Our results show that first-line drugs achieved only modest bactericidal effects on all three populations over 7 days (1 to 2.5 log10 reductions), and SN-dependent M. tuberculosis was more tolerant to streptomycin and isoniazid than the plateable and nonplateable M. tuberculosis strains. Susceptibility of plateable M. tuberculosis to bactericidal drugs was significantly increased after passage in vitro; thus, tolerance observed in the sputum samples from the population groups was likely associated with mycobacterial adaptation to the host environment at some time prior to expectoration. Our findings support the use of a simple ex vivo system for testing drug efficacies against mycobacteria that have phenotypically adapted during tuberculosis infection.
The medical risks of travel and stay at high altitude are well known. Many more people travel for recreation to lower but still significant altitudes. To investigate the quality of sleep and sleep-related breathing disorders (SRBD) at that altitude we performed full polysomnography in nine young volunteers at lowland (760 m above sea level) on the first and sixth night after ascent to 3,200 m. There have been few studies on such populations. The subjects were nonsmoking healthy males aged 20.3 +/- 3.5 years with normal spirometry and arterial blood gas measurements performed at low altitude. Although there was no statistically significant difference in the duration of stages and sleep quality between low altitude night and both nights at high altitude as assessed by percent of sleep spent in stage 1, 2, 3+4 NREM, and REM sleep, total sleep time (TST), and sleep efficiency; the number of arousals and awakenings doubled at high altitude. There was no periodic breathing (PB) during sleep, except in isolated central events of SRBD, at low altitude. PB appeared at altitude mostly during NREM sleep and its intensity remained stable throughout the study period. Individual variations of PB intensity were high, ranging from 0.1 to 24% of TST. There were also some episodes of obstructive apnea and hypopnea during sleep at high altitude (p < 0.001). Mean SaO2 was lower during the study nights at high altitude when compared with low altitude. There were some signs of ventilatory acclimatization as shown by a higher mean SaO2 during the sixth compared with the first night at altitude (p < 0.001). We conclude that the sleep quality at the altitude of 3,200 m remains satisfactory when compared to low altitude. There is high individual variability in intensity of PB at that altitude.
Adverse right ventricular (RV) remodeling leads to ventricular dysfunction and failure that represents an important determinant of outcome in patients with pulmonary hypertension (PH). Recent evidence indicates that inflammatory activation contributes to the pathogenesis of adverse RV remodeling and dysfunction. It has been shown that accumulation of inflammatory cells such as macrophages and mast cells in the right ventricle is associated with maladaptive RV remodeling. In addition, inhibition of inflammation in animal models of RV failure ameliorated RV structural and functional impairment. Furthermore, a number of circulating inflammatory mediators have been demonstrated to be associated with RV performance. This work reviews the role of inflammation in RV remodeling and dysfunction and discusses anti-inflammatory strategies that may attenuate adverse structural alterations while promoting improvement of RV function.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.