In this study, the main aim was to fabricate propolis (Ps)-containing wound dressing patches using 3D printing technology. Different combinations and structures of propolis (Ps)-incorporated sodium alginate (SA) scaffolds were developed. The morphological studies showed that the porosity of developed scaffolds was optimized when 20% (v/v) of Ps was added to the solution. The pore sizes decreased by increasing Ps concentration up to a certain level due to its adhesive properties. The mechanical, swelling-degradation (weight loss) behaviors, and Ps release kinetics were highlighted for the scaffold stability. An antimicrobial assay was employed to test and screen antimicrobial behavior of Ps against Escherichia coli and Staphylococcus aureus strains. The results show that the Ps-added scaffolds have an excellent antibacterial activity because of Ps compounds. An in vitro cytotoxicity test was also applied on the scaffold by using the extract method on the human dermal fibroblasts (HFFF2) cell line. The 3D-printed SA–Ps scaffolds are very useful structures for wound dressing applications.
Grammothele lineata, an endophyte isolated in our laboratory from jute (Corchorus olitorius acc. 2015) was found to be a substantial paclitaxel producer. Taxol and its related compounds, produced by this endophyte were extracted by growing the fungus in simple nutrient media (potato dextrose broth, PDB). Taxol was identified and characterized by different analytical techniques (TLC, HPLC, FTIR, LC-ESI-MS/MS) following its extraction by ethyl acetate. In PDB media, this fungus was found to produce 382.2 μgL-1 of taxol which is about 7.6 x103 fold higher than the first reported endophytic fungi, Taxomyces andreanae. The extracted taxol exhibited cytotoxic activity in an in vitro culture of HeLa cancer cell line. The fungal extract also exhibited antifungal and antibacterial activities against different pathogenic strains. This is the first report of a jute endophytic fungus harboring the capacity to produce taxol and also the first reported taxol producing species that belongs to the Basidiomycota phylum, so far unknown to be a taxol producer. These findings suggest that the fungal endophyte, Grammothele lineata can be an excellent source of taxol and can also serve as a potential species for chemical and genetic engineering to enhance further the production of taxol.
The endophytic bacterium Burkholderia contaminans NZ was isolated from jute, which is an important fiber-producing plant. This bacterium exhibits significant growth promotion activity in in vivo pot experiments, and like other plant growth-promoting (PGP) bacteria fixes nitrogen, produces indole acetic acid (IAA), siderophore, and 1-aminocyclopropane-1-carboxylate (ACC) deaminase activity. B. contaminans NZ is considered to exert a promising growth inhibitory effect on Macrophomina phaseolina, a phytopathogen responsible for infecting hundreds of crops worldwide. This study aimed to identify the possibility of B. contaminans NZ as a safe biocontrol agent and assess its effectiveness in suppressing phytopathogenic fungi, especially M. phaseolina. Co-culture of M. phaseolina with B. contaminans NZ on both solid and liquid media revealed appreciable growth suppression of M. phaseolina and its chromogenic aberration in liquid culture. Genome mining of B. contaminans NZ using NaPDoS and antiSMASH revealed gene clusters that displayed 100% similarity for cytotoxic and antifungal substances, such as pyrrolnitrin. GC-MS analysis of B. contaminans NZ culture extracts revealed various bioactive compounds, including catechol; 9,10-dihydro-12’-hydroxy-2’-methyl-5’-(phenylmethyl)- ergotaman 3’,6’,18-trione; 2,3-dihydro-3,5- dihydroxy-6-methyl-4H-pyran-4-one; 1-(1,6-Dioxooctadecyl)- pyrrolidine; 9-Octadecenamide; and 2- methoxy- phenol. These compounds reportedly exhibit tyrosinase inhibitory, antifungal, and antibiotic activities. Using a more targeted approach, an RP-HPLC purified fraction was analyzed by LC-MS, confirming the existence of pyrrolnitrin in the B. contaminans NZ extract. Secondary metabolites, such as catechol and ergotaman, have been predicted to inhibit melanin synthesis in M. phaseolina. Thus, B. contaminans NZ appears to inhibit phytopathogens by apparently impairing melanin synthesis and other potential biochemical pathways, exhibiting considerable fungistatic activity.
Lignin, a cross-linked macromolecule of hydrophobic aromatic structure, provides additional rigidity to a plant cell wall. Although it is an integral part of the plant cell, presence of lignin considerably reduces the quality of the fiber of fiber-yielding plants. Decreasing lignin in such plants holds significant commercial and environmental potential. This study aimed at reducing the lignin content in jute-a fiber crop, by introducing hpRNA-based vectors for downregulation of two monolignoid biosynthetic genes- cinnamate 4-hydroxylase (C4H) and caffeic acid O-methyltransferase (COMT). Transgenic generations, analyzed through Southern, RT-PCR and northern assays showed downregulation of the selected genes. Transgenic lines exhibited reduced level of gene expression with ~ 16–25% reduction in acid insoluble lignin for the whole stem and ~13–14% reduction in fiber lignin content compared to the control lines. Among the two transgenic plant types one exhibited an increase in cellulose content and concomitant improvement of glucose release. Composition of the lignin building blocks was found to alter and this alteration resulted in a pattern, different from other plants where the same genes were manipulated. It is expected that successful COMT-hpRNA and C4H-hpRNA transgenesis in jute will have far-reaching commercial implications leading to product diversification and value addition.
Here we report a jute endophyte Staphylococcus hominis strain MBL_AB63 isolated from jute seeds which showed promising antimicrobial activity against Staphylococcus aureus SG511 when screening for antimicrobial substances. The whole genome sequence of this strain, annotated using BAGEL4 and antiSMASH 5.0 to predict the gene clusters for antimicrobial substances identified a novel antimicrobial peptide cluster that belongs to the class I lantibiotic group. The predicted lantibiotic (homicorcin) was found to be 82% similar to a reported peptide epicidin 280 having a difference of seven amino acids at several positions of the core peptide. Two distinct peaks obtained at close retention times from a RP-HPLC purified fraction have comparable antimicrobial activities and LC–MS revealed the molecular mass of these peaks to be 3046.5 and 3043.2 Da. The presence of an oxidoreductase (homO) similar to that of epicidin 280- associated eciO or epilancin 15X- associated elxO in the homicorcin gene cluster is predicted to be responsible for the reduction of the first dehydrated residue dehydroalanine (Dha) to 2-hydroxypropionate that causes an increase of 3 Da mass of homicorcin 1. Trypsin digestion of the core peptide and its variant followed by ESI–MS analysis suggests the presence of three ring structures, one in the N-terminal and other two interlocking rings at the C-terminal region that remain undigested. Homicorcin exerts bactericidal activity against susceptible cells by disrupting the integrity of the cytoplasmic membrane through pore formation as observed under FE-SEM.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.