Background The COVID-19 pandemic has enhanced the adoption of virtual learning after the urgent suspension of traditional teaching. Different online learning strategies were established to face this learning crisis. The present descriptive cross-sectional study was conducted to reveal the different digital procedures implemented by the College of Medicine at Qassim University for better student performance and achievement. Methods The switch into distance-based learning was managed by the digitalization committee. Multiple online workshops were conducted to the staff and students about the value and procedures of such a shift. New procedures for online problem-based learning (PBL) sessions were designed. Students’ satisfaction was recorded regarding the efficiency of live streaming educational activities and online assessment. Results The students were satisfied with the overall shift into this collaborative e-learning environment and the new successful procedures of virtual PBL sessions. The digital learning tools facilitated the performance of the students and their peer sharing of knowledge. The role of informatics computer technologies was evident in promoting the students, research skills, and technical competencies. Conclusions The present work elaborated on the procedures and privileges of the transformation into digitalized learning, particularly the PBL sessions, which were appreciated by the students and staff. It recommended the adoption of future online theoretical courses as well as the development of informatics computer technologies.
The Coronavirus disease 2019 (COVID-19) is an infectious disease spreading rapidly and uncontrollably throughout the world. The critical challenge is the rapid detection of Coronavirus infected people. The available techniques being utilized are body-temperature measurement, along with anterior nasal swab analysis. However, taking nasal swabs and lab testing are complex, intrusive, and require many resources. Furthermore, the lack of test kits to meet the exceeding cases is also a major limitation. The current challenge is to develop some technology to non-intrusively detect the suspected Coronavirus patients through Artificial Intelligence (AI) techniques such as deep learning (DL). Another challenge to conduct the research on this area is the difficulty of obtaining the dataset due to a limited number of patients giving their consent to participate in the research study. Looking at the efficacy of AI in healthcare systems, it is a great challenge for the researchers to develop an AI algorithm that can help health professionals and government officials automatically identify and isolate people with Coronavirus symptoms. Hence, this paper proposes a novel method CoVIRNet (COVID Inception-ResNet model), which utilizes the chest X-rays to diagnose the COVID-19 patients automatically. The proposed algorithm has different inception residual blocks that cater to information by using different depths feature maps at different scales, with the various layers. The features are concatenated at each proposed classification block, using the average-pooling layer, and concatenated features are passed to the fully connected layer. The efficient proposed deep-learning blocks used different regularization techniques to minimize the overfitting due to the small COVID-19 dataset. The multiscale features are extracted at different levels of the proposed deep-learning model and then embedded into various machine-learning models to validate the combination of deep-learning and machine-learning models. The proposed CoVIR-Net model achieved 95.7% accuracy, and the CoVIR-Net feature extractor with random-forest classifier produced 97.29% accuracy, which is the highest, as compared to existing state-of-the-art deep-learning methods. The proposed model would be an automatic solution for the assessment and classification of COVID-19. We predict that the proposed method will demonstrate an outstanding performance as compared to the state-of-the-art techniques being used currently.
Brain tumors reduce life expectancy due to the lack of a cure. Moreover, their diagnosis involves complex and costly procedures such as magnetic resonance imaging (MRI) and lengthy, careful examination to determine their severity. However, the timely diagnosis of brain tumors in their early stages may save a patient’s life. Therefore, this work utilizes MRI with a machine learning approach to diagnose brain tumor severity (glioma, meningioma, no tumor, and pituitary) in a timely manner. MRI Gaussian and nonlinear scale features are extracted due to their robustness over rotation, scaling, and noise issues, which are common in image processing features such as texture, local binary patterns, histograms of oriented gradient, etc. For the features, each MRI is broken down into multiple small 8 × 8-pixel MR images to capture small details. To counter memory issues, the strongest features based on variance are selected and segmented into 400 Gaussian and 400 nonlinear scale features, and these features are hybridized against each MRI. Finally, classical machine learning classifiers are utilized to check the performance of the proposed hybrid feature vector. An available online brain MRI image dataset is utilized to validate the proposed approach. The results show that the support vector machine-trained model has the highest classification accuracy of 95.33%, with a low computational time. The results are also compared with the recent literature, which shows that the proposed model can be helpful for clinicians/doctors for the early diagnosis of brain tumors.
In today’s world, a brain tumor is one of the most serious diseases. If it is detected at an advanced stage, it might lead to a very limited survival rate. Therefore, brain tumor classification is crucial for appropriate therapeutic planning to improve patient life quality. This research investigates a deep-feature-trained brain tumor detection and differentiation model using classical/linear machine learning classifiers (MLCs). In this study, transfer learning is used to obtain deep brain magnetic resonance imaging (MRI) scan features from a constructed convolutional neural network (CNN). First, multiple layers (19, 22, and 25) of isolated CNNs are constructed and trained to evaluate the performance. The developed CNN models are then utilized for training the multiple MLCs by extracting deep features via transfer learning. The available brain MRI datasets are employed to validate the proposed approach. The deep features of pre-trained models are also extracted to evaluate and compare their performance with the proposed approach. The proposed CNN deep-feature-trained support vector machine model yielded higher accuracy than other commonly used pre-trained deep-feature MLC training models. The presented approach detects and distinguishes brain tumors with 98% accuracy. It also has a good classification rate (97.2%) for an unknown dataset not used to train the model. Following extensive testing and analysis, the suggested technique might be helpful in assisting doctors in diagnosing brain tumors.
Worldwide, COVID-19 is a highly contagious epidemic that has affected various fields. Using Artificial Intelligence (AI) and particular feature selection approaches, this study evaluates the aspects affecting the health of students throughout the COVID-19 lockdown time. The research presented in this paper plays a vital role in indicating the factor affecting the health of students during the lockdown in the COVID-19 pandemic. The research presented in this article investigates COVID-19’s impact on student health using feature selections. The Filter feature selection technique is used in the presented work to statistically analyze all the features in the dataset, and for better accuracy. ReliefF (TuRF) filter feature selection is tuned and utilized in such a way that it helps to identify the factors affecting students’ health from a benchmark dataset of students studying during COVID-19. Random Forest (RF), Gradient Boosted Decision Trees (GBDT), Support Vector Machine (SVM), and 2- layer Neural Network (NN), helps in identifying the most critical indicators for rapid intervention. Results of the approach presented in the paper identified that the students who maintained their weight and kept themselves busy in health activities in the pandemic, such student’s remained healthy through this pandemic and study from home in a positive manner. The results suggest that the 2- layer NN machine-learning algorithm showed better accuracy (90%) to predict the factors affecting on health issues of students during COVID-19 lockdown time.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.