Little is known about the molecular and regulatory mechanisms of long-distance nitrate transport in higher plants. NRT1.5 is one of the 53 Arabidopsis thaliana nitrate transporter NRT1 (Peptide Transporter PTR) genes, of which two members, NRT1.1 (CHL1 for Chlorate resistant 1) and NRT1.2, have been shown to be involved in nitrate uptake. Functional analysis of cRNA-injected Xenopus laevis oocytes showed that NRT1.5 is a low-affinity, pH-dependent bidirectional nitrate transporter. Subcellular localization in plant protoplasts and in planta promoter-b-glucuronidase analysis, as well as in situ hybridization, showed that NRT1.5 is located in the plasma membrane and is expressed in root pericycle cells close to the xylem. Knockdown or knockout mutations of NRT1.5 reduced the amount of nitrate transported from the root to the shoot, suggesting that NRT1.5 participates in root xylem loading of nitrate. However, root-to-shoot nitrate transport was not completely eliminated in the NRT1.5 knockout mutant, and reduction of NRT1.5 in the nrt1.1 background did not affect rootto-shoot nitrate transport. These data suggest that, in addition to that involving NRT1.5, another mechanism is responsible for xylem loading of nitrate. Further analyses of the nrt1.5 mutants revealed a regulatory loop between nitrate and potassium at the xylem transport step.
INTRODUCTIONNitrate and ammonium ions are the two major nitrogen sources for higher plants. Due to its toxicity, ammonium is preferentially assimilated in the root and then transported in an organic form to the aerial parts. By contrast, nitrate can be assimilated into ammonium and then amino acids in the root or shoot. Partitioning of nitrate assimilation between the root and shoot depends on the plant species, external nitrate concentration, temperature, and light intensity (reviewed in Smirnoff and Stewart, 1985). If there is sufficient light, nitrate assimilation in the leaf has a lower energy cost than in the root. However, some disadvantages of leaf nitrate assimilation include (1) if light is limited, nitrate assimilation and carbon dioxide fixation will compete directly for the reductants and ATP generated by photosynthetic electron transport (Canvin and Atkins, 1974), and (2) hydroxyl ions generated in the leaf need to be neutralized by the synthesis of organic acids (in the root, the pH balance may possibly be maintained by reducing proton excretion or increasing bicarbonate excretion). Due to these factors, the partition of nitrate assimilation between the root and shoot shows both seasonal and diurnal fluctuations, allowing the plant to sustain maximal growth. In turn, the partition of nitrate assimilation depends on the partition of nitrate between the root and shoot.To transport nitrate to the aerial parts of the plant, nitrate has to be loaded into the xylem vessels of the root vascular stele. In Arabidopsis thaliana roots, four layers of cells are found surrounding the xylem, these being the epidermis, cortex, endodermis, and pericycle (in the order external to ...