Weather and climate models are challenged by uncertainties and biases in simulating Southern Ocean (SO) radiative fluxes that trace to a poor understanding of cloud, aerosol, precipitation and radiative processes, and their interactions. Projects between 2016 and 2018 used in-situ probes, radar, lidar and other instruments to make comprehensive measurements of thermodynamics, surface radiation, cloud, precipitation, aerosol, cloud condensation nuclei (CCN) and ice nucleating particles over the SO cold waters, and in ubiquitous liquid and mixed-phase cloudsnucleating particles over the SO cold waters, and in ubiquitous liquid and mixed-phase clouds common to this pristine environment. Data including soundings were collected from the NSF/NCAR G-V aircraft flying north-south gradients south of Tasmania, at Macquarie Island, and on the RV Investigator and RSV Aurora Australis. Synergistically these data characterize boundary layer and free troposphere environmental properties, and represent the most comprehensive data of this type available south of the oceanic polar front, in the cold sector of SO cyclones, and across seasons.Results show a largely pristine environments with numerous small and few large aerosols above cloud, suggesting new particle formation and limited long-range transport from continents, high variability in CCN and cloud droplet concentrations, and ubiquitous supercooled water in thin, multi-layered clouds, often with small-scale generating cells near cloud top. These observations demonstrate how cloud properties depend on aerosols while highlighting the importance of confirmed low clouds were responsible for radiation biases. The combination of models and observations is examining how aerosols and meteorology couple to control SO water and energy budgets.
Results from 22 airborne field campaigns, including more than 10 million high-resolution particle images collected in cirrus formed in situ and in convective anvils, are interpreted in terms of particle shapes and their potential impact on radiative transfer. Emphasis is placed on characterizing ice particle shapes in tropical maritime and midlatitude continental anvil cirrus, as well as in cirrus formed in situ in the upper troposphere, and subvisible cirrus in the upper tropical troposphere layer. There is a distinctive difference in cirrus ice particle shapes formed in situ compared to those in anvils that are generated in close proximity to convection. More than half the mass in cirrus formed in situ are rosette shapes (polycrystals and bullet rosettes). Cirrus formed from fresh convective anvils is mostly devoid of rosette-shaped particles. However, small frozen drops may experience regrowth downwind of an aged anvil in a regime with RH ice >~120% and then grow into rosette shapes. Identifiable particle shapes in tropical maritime anvils that have not been impacted by continental influences typically contain mostly single plate-like and columnar crystals and aggregates. Midlatitude continental anvils contain single-rimed particles, more and larger aggregates with riming, and chains of small ice particles when in a highly electrified environment. The particles in subvisible cirrus are <~100 μm and quasi-spherical with some plates and rare trigonal shapes. Percentages of particle shapes and power laws relating mean particle area and mass to dimension are provided to improve parameterization of remote retrievals and numerical simulations.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.