Several modelling approaches are available in the literature to predict longitudinal tensile failure of ibre-reinforced polymers. However, a systematic, blind and unbiased comparison between the predictions from the different models and against experimental data has never been performed. This paper presents a benchmarking exercise performed for three different models from the literature: (i) an analytical hierarchical scaling law for composite ibre bundles, (ii) direct numerical simulations of composite ibre bundles, and (iii) a multiscale inite-element simulation method. The results show that there are signi icant discrepancies between the predictions of the different modelling approaches for ibre-break density evolution, cluster formation and ultimate strength, and that each of the three models presents unique advantages over the others. Blind model predictions are also compared against detailed computed-tomography experiments, showing that our understanding of the micromechanics of longitudinal tensile failure of composites needs to be developed further.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.