In mice, conventional and plasmacytoid dendritic cells (DCs) derive from separate hematopoietic precursors before they migrate to peripheral tissues. Moreover, two classes of conventional DCs (cDC1 and cDC2 DCs) and one class of plasmacytoid DCs (pDCs) have been shown to be transcriptionally and functionally distinct entities. In humans, these three DC subtypes can be identified using the cell surface markers CD1c (cDC2), CD141 (cDC1), and CD303 (pDCs), albeit it remains elusive whether DC functionality is mainly determined by ontogeny or the tissue microenvironment. By phenotypic and transcriptional profiling of these three DC subtypes in different human tissues derived from a large number of human individuals, we demonstrate that DC subpopulations in organs of the lymphohematopoietic system (spleen, thymus, and blood) are strongly defined by ontogeny rather than by signals from the microenvironment. In contrast, DC subsets derived from human lung or skin differed substantially, strongly arguing that DCs react toward modulatory signals from tissue microenvironments. Collectively, the data obtained in this study may serve as a major resource to guide further studies into human DC biology during homeostasis and inflammation.
Over the past few decades, research on Alzheimer’s disease (AD) has focused on pathomechanisms linked to two of the major pathological hallmarks of extracellular deposition of beta-amyloid peptides and intra-neuronal formation of neurofibrils. Recently, a third disease component, the neuroinflammatory reaction mediated by cerebral innate immune cells, has entered the spotlight, prompted by findings from genetic, pre-clinical, and clinical studies. Various proteins that arise during neurodegeneration, including beta-amyloid, tau, heat shock proteins, and chromogranin, among others, act as danger-associated molecular patterns, that—upon engagement of pattern recognition receptors—induce inflammatory signaling pathways and ultimately lead to the production and release of immune mediators. These may have beneficial effects but ultimately compromise neuronal function and cause cell death. The current review, assembled by participants of the Chiclana Summer School on Neuroinflammation 2016, provides an overview of our current understanding of AD-related immune processes. We describe the principal cellular and molecular players in inflammation as they pertain to AD, examine modifying factors, and discuss potential future therapeutic targets.
Myelin is required for the function of neuronal axons in the central nervous system, but the mechanisms that support myelin health are unclear. Although macrophages in the central nervous system have been implicated in myelin health1, it is unknown which macrophage populations are involved and which aspects they influence. Here we show that resident microglia are crucial for the maintenance of myelin health in adulthood in both mice and humans. We demonstrate that microglia are dispensable for developmental myelin ensheathment. However, they are required for subsequent regulation of myelin growth and associated cognitive function, and for preservation of myelin integrity by preventing its degeneration. We show that loss of myelin health due to the absence of microglia is associated with the appearance of a myelinating oligodendrocyte state with altered lipid metabolism. Moreover, this mechanism is regulated through disruption of the TGFβ1–TGFβR1 axis. Our findings highlight microglia as promising therapeutic targets for conditions in which myelin growth and integrity are dysregulated, such as in ageing and neurodegenerative disease2,3.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.