A semiconductor injection laser that differs in a fundamental way from diode lasers has been demonstrated. It is built out of quantum semiconductor structures that were grown by molecular beam epitaxy and designed by band structure engineering. Electrons streaming down a potential staircase sequentially emit photons at the steps. The steps consist of coupled quantum wells in which population inversion between discrete conduction band excited states is achieved by control of tunneling. A strong narrowing of the emission spectrum, above threshold, provides direct evidence of laser action at a wavelength of 4.2 micrometers with peak powers in excess of 8 milliwatts in pulsed operation. In quantum cascade lasers, the wavelength, entirely determined by quantum confinement, can be tailored from the mid-infrared to the submillimeter wave region in the same heterostructure material.
The high power operation of mid-infrared quantum cascade lasers at temperatures up to T=320 K is reported. Gain at high temperature is optimized by a design combining low doping, a funnel injector, and a three-well vertical transition active region. A molecular beam epitaxy grown InP top cladding layer is also used to optimize heat dissipation. A peak pulsed optical power of 200 mW and an average power of 6 mW are obtained at 300 K and at a wavelength λ=5.2 μm. The devices also operate in continuous wave up to 140 K.
Growth of quantum cascade lasers based on strain-compensated InxGa1−xAs/InyAl1−yAs and operating at a wavelength shorter than 4 μm is reported. Pulsed mode operation of these lasers up to T=280 K is reported with a high T0. Continuous wave powers as high as 120 mW are reported at cryogenic temperatures (15 K).
A spectroscopic gas sensor for nitric oxide (NO) detection based on a cavity ringdown technique was designed and evaluated. A cw quantum-cascade distributed-feedback laser operating at 5.2 mum was used as a tunable single-frequency light source. Both laser-frequency tuning and abrupt interruptions of the laser radiation were performed through manipulation of the laser current. A single ringdown event sensitivity to absorption of 2.2 x 10(-8) cm(-1) was achieved. Measurements of parts per billion (ppb) NO concentrations in N(2) with a 0.7-ppb standard error for a data collection time of 8 s have been performed. Future improvements are discussed that would allow quantification of NO in human breath.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.