A capillary zone electrophoresis method has been carried out to determine and quantitate some compounds of the polyphenolic fraction of virgin olive oil which have never previously been determined before using capillary electrophoresis, such as elenolic acid, ligstroside aglycon, oleuropein aglycon, and (+)-pinoresinol. The compounds were identified using standards obtained by semipreparative high-performance liquid chromatography (HPLC). A detailed method optimization was performed to separate the phenolic compounds present in olive oil using a methanol-water extract of Picual extra-virgin olive oil, and different extraction systems were compared (C18-solid phase extraction (SPE), Diol-SPE, Sax-SPE and liquid-liquid extraction). The optimized parameters were 30 mM sodium tetraborate buffer (pH 9.3) at 25 kV with 8 s hydrodynamic injection, and the quantitation was carried out by the use of two reference compounds at two different wavelengths.
This work highlights the relevance of the interactions between polymer and solvent during precipitation polymerization in order to control the morphology and the size of the precipitated material without any changes in chemical composition. Thus, a thermodynamic model based on Flory Hugings model and Hansen's solubility parameters has been proposed in order to control the precipitation process. This model is based on the study and characterization of the interactions (hydrogen-bonding forces, polar forces and dispersion forces) between growing polymeric chains and solvent molecules. The model was corroborated by more than 80 different solvent compositions were used for a ternary solvent mixture (toluene, acetonitrile and 2-propanol) and two different monomer molar ratio feeds (45% MAA, 20% HEMA, and 35% EDMA; 20% MAA, 45% HEMA, and 35% EDMA). The morphologies of the resulting polymer material were characterized by scanning electron microscopy and transmission electron microscopy and the particles sizes were deduced by dynamic light scattering. The polymeric particles with different sizes prepared in this work were used to introduce on them magnetic properties. The results in this work enable the control of the size, chemical composition, and the homogeneous encapsulation of Fe 3 O 4 within different hydrophilic polymeric matrixes by polymerization precipitation, allowing the design of magnetic particles free of any stabilizers.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.