Patients with a diverse spectrum of rare genetic disorders can present with inflammatory bowel diseases (monogenic IBD). Patients with these disorders often develop symptoms during infancy or early childhood, along with endoscopic or histologic features of Crohn’s disease, ulcerative colitis or IBD unclassified. Defects in interleukin 10 signaling have a Mendelian inheritance pattern with complete penetrance of intestinal inflammation. Several genetic defects that disturb intestinal epithelial barrier function or affect innate and adaptive immune function have incomplete penetrance of the IBD-like phenotype. Several of these monogenic conditions do not respond to conventional therapy and are associated with high morbidity and mortality. Due to the broad spectrum of these extremely rare diseases, a correct diagnosis is frequently a challenge and often delayed. In many cases, these diseases cannot be categorized based on standard histologic and immunologic features of IBD. Genetic analysis is required to identify the cause of the disorder and offer the patient appropriate treatment options, which include medical therapy, surgery, or allogeneic hematopoietic stem cell transplantation. In addition, diagnosis based on genetic analysis can lead to genetic counseling for family members of patients. We describe key intestinal, extra-intestinal, and laboratory features of 50 genetic variants associated with IBD-like intestinal inflammation. We provide approaches for identifying patients likely to have these disorders. We discuss classical approaches to identify these variants in patients, starting with phenotypic and functional assessments that lead to analysis of candidate genes. As a complementary approach, we discuss parallel genetic screening using next-generation sequencing followed by functional confirmation of genetic defects.
Summary Intact interkeulin-10 receptor (IL-10R) signaling on effector and regulatory T (Treg) cells are each independently required to maintain immune tolerance. Here we show that IL-10 sensing by innate immune cells, independent of its effects on T cells, was critical for regulating mucosal homeostasis. Following wild-type CD4+ T cell transfer, Rag2−/−Il10rb−/− mice developed severe colitis in association with profound defects in generation and function of Treg cells. Moreover, loss of IL-10R signaling impaired the generation and function of anti-inflammatory intestinal and bone marrow-derived macrophages, and their ability to secrete IL-10. Importantly, transfer of wild-type but not Il10rb−/− anti-inflammatory macrophages ameliorated colitis induction by wild-type CD4+ T cells in Rag2−/−Il10rb−/− mice. Similar alterations in the generation and function of anti-inflammatory macrophages were observed in IL-10R-deficient patients with very early-onset inflammatory bowel disease. Collectively, our studies define innate immune IL-10R signaling as a key factor regulating mucosal immune homeostasis in mice and humans.
The inflammatory bowel diseases (IBD) Crohn’s disease and ulcerative colitis are common causes of morbidity in children and young adults in the western world. Here we report the results of a genome-wide association study in early-onset IBD involving 3,426 affected individuals and 11,963 genetically matched controls recruited through international collaborations in Europe and North America, thereby extending the results from a previous study of 1,011 individuals with early-onset IBD1. We have identified five new regions associated with early-onset IBD susceptibility, including 16p11 near the cytokine gene IL27 (rs8049439, P = 2.41 × 10−9), 22q12 (rs2412973, P = 1.55 × 10−9), 10q22 (rs1250550, P = 5.63 × 10−9), 2q37 (rs4676410, P = 3.64 × 10−8) and 19q13.11 (rs10500264, P = 4.26 × 10−10). Our scan also detected associations at 23 of 32 loci previously implicated in adult-onset Crohn’s disease and at 8 of 17 loci implicated in adult-onset ulcerative colitis, highlighting the close pathogenetic relationship between early- and adult-onset IBD.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.