We derive limits on any electromagnetic counterpart to the compact binary merger S190814bv, whose parameters are consistent with the merger of a black hole and a neutron star. We present observations with the new wide-field optical imager DDOTI dand also consider Swift/BAT observations reported by Palmer et al. (2019). We show that Swift/BAT would have detected a counterpart with similar properties to a typical on-axis short GRB at the 98 per cent confidence level, whereas our DDOTI observations only rule out such a counterpart at the 27 per cent confidence level. Neither have sufficient sensitivity to rule out an off-axis counterpart like GW 170817. We compare the efficiency of Swift/BAT and DDOTI for future observations, and show that DDOTI is likely to be about twice as efficient as Swift/BAT for off-axis events up to about 100 Mpc.
We present optical photometry of the afterglow of the long GRB 180205A with the COATLI telescope from 217 seconds to about 5 days after the Swift/BAT trigger. We analyse this photometry in the conjunction with the X-ray light curve from Swift/XRT. The late-time light curves and spectra are consistent with the standard forward-shock scenario. However, the early-time optical and X-ray light curves show non-typical behavior; the optical light curve exhibits a flat plateau while the X-ray light curve shows a flare. We explore several scenarios and conclude that the most likely explanation for the early behavior is late activity of the central engine. Subject headings: (stars) gamma-ray burst: individual (GRB 180205A).
The Reionization And Transient Infra,.Red (RATIR) camera has been built for rapid Gamma,.Ray Burst (GRE) followup and will provide simultaneous optical and infrared photometric capabilities. The infrared portion of this camera incorporates two Teledyne HgCdTe HAWAII-2RG detectors, controlled by Teledyne's SIDECAR ASICs. While other ground-based systems have used the SIDECAR before, this system also utilizes Teledyne's JADE2 interface card and IDE development environment. Together, this setup comprises Teledyne's Development Kit, which is a bundled solution that can be efficiently integrated into future ground-based systems. In this presentation, we characterize the system's read noise, dark current, and conversion gain.
DDOTI will be a wide-field robotic imager consisting of six 28-cm telescopes with prime focus CCDs mounted on a common equatorial mount. Each telescope will have a field of view of 12 square degrees, will have 2 arcsec pixels, and will reach a 10-sigma limiting magnitude in 60 seconds of r = 18.7 in dark time and r = 18.0 in bright time. The set of six will provide an instantaneous field of view of about 72 square degrees. DDOTI uses commercial components almost entirely. The first DDOTI will be installed at the Observatorio Astron\'omico Nacional in Sierra San Pedro Mart\'ir, Baja California, M\'exico in early 2017. The main science goals of DDOTI are the localization of the optical transients associated with GRBs detected by the GBM instrument on the Fermi satellite and with gravitational-wave transients. DDOTI will also be used for studies of AGN and YSO variability and to determine the occurrence of hot Jupiters. The principal advantage of DDOTI compared to other similar projects is cost: a single DDOTI installation costs only about US$500,000. This makes it possible to contemplate a global network of DDOTI installations. Such geographic diversity would give earlier access and a higher localization rate. We are actively exploring this option.Comment: To appear in the proceedings of SPIE conference 9910 "Observatory Operations: Strategies, Processes, and Systems VI". 12 page
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.