WORDS)BACKGROUND: The SARS-CoV-2 outbreak poses challenge to healthcare systems due to high complication rates in patients with cardiometabolic diseases. Here, we identify risk factors and propose a clinical score to predict COVID-19 lethality, including specific factors for diabetes and obesity and its role in improving risk prediction. METHODS:We obtained data of confirmed and negative COVID-19 cases and their demographic and health characteristics from the General Directorate of Epidemiology of Mexican Ministry of Health. We investigated specific risk factors associated to COVID-19 positivity and mortality and explored the impact of diabetes and obesity on modifying COVID-19 related lethality. Finally, we built a clinical score to predict COVID-19 lethality. RESULTS:Among 177,133 subjects at May 18 th , 2020, we observed 51,633 subjects with SARS-CoV-2 and 5,332 deaths. Risk factors for lethality in COVID-19 include early-onset diabetes, obesity, COPD, advanced age, hypertension, immunosuppression, and CKD; we observed that obesity mediates 49.5% of the effect of diabetes on COVID-19 lethality. Earlyonset diabetes conferred an increased risk of hospitalization and obesity conferred an increased risk for ICU admission and intubation. Our predictive score for COVID-19 lethality included age ≥ 65 years, diabetes, early-onset diabetes, obesity, age <40 years, CKD, hypertension, and immunosuppression and significantly discriminates lethal from non-lethal COVID-19 cases (c-statistic=0.823). RESULTS:Here, we propose a mechanistic approach to evaluate risk for complications and lethality attributable to COVID-19 considering the effect of obesity and diabetes in Mexico.Our score offers a clinical tool for quick determination of high-risk susceptibility patients in a first contact scenario.
BACKGROUND COVID-19 has had a disproportionate impact on older adults. Mexico's population is younger, yet COVID-19’s impact on older adults is comparable to countries with older population structures. Here, we aim to identify health and structural determinants that increase susceptibility to COVID-19 in older Mexican adults beyond chronological aging. METHODS We analyzed confirmed COVID-19 cases in older adults using data from the General Directorate of Epidemiology of Mexican Ministry of Health. We modeled risk factors for increased COVID-19 severity and mortality, using mixed models to incorporate multilevel data concerning healthcare access and marginalization. We also evaluated structural factors and comorbidity profiles compared to chronological age for COVID-19 mortality risk prediction. RESULTS We analyzed 20,804 confirmed SARS-CoV-2 cases in adults aged ≥60 years. Male sex, smoking, diabetes, and obesity were associated with pneumonia, hospitalization and ICU admission in older adults, CKD and COPD were associated with hospitalization. High social lag indexes and access to private care were predictors of COVID-19 severity and mortality. Age was not a predictor of COVID-19 severity in individuals without comorbidities and combination of structural factors and comorbidities were better predictors of COVID-19 lethality and severity compared to chronological age alone. COVID-19 baseline lethality hazards were heterogeneously distributed across Mexican municipalities, particularly when comparing urban and rural areas. CONCLUSIONS Structural factors and comorbidity explain excess risk for COVID-19 severity and mortality over chronological age in older Mexican adults. Clinical decision-making related to COVID-19 should focus away from chronological aging onto more a comprehensive geriatric care approach.
IntroductionPrevious reports in European populations demonstrated the existence of five data-driven adult-onset diabetes subgroups. Here, we use self-normalizing neural networks (SNNN) to improve reproducibility of these data-driven diabetes subgroups in Mexican cohorts to extend its application to more diverse settings.Research design and methodsWe trained SNNN and compared it with k-means clustering to classify diabetes subgroups in a multiethnic and representative population-based National Health and Nutrition Examination Survey (NHANES) datasets with all available measures (training sample: NHANES-III, n=1132; validation sample: NHANES 1999–2006, n=626). SNNN models were then applied to four Mexican cohorts (SIGMA-UIEM, n=1521; Metabolic Syndrome cohort, n=6144; ENSANUT 2016, n=614 and CAIPaDi, n=1608) to characterize diabetes subgroups in Mexicans according to treatment response, risk for chronic complications and risk factors for the incidence of each subgroup.ResultsSNNN yielded four reproducible clinical profiles (obesity related, insulin deficient, insulin resistant, age related) in NHANES and Mexican cohorts even without C-peptide measurements. We observed in a population-based survey a high prevalence of the insulin-deficient form (41.25%, 95% CI 41.02% to 41.48%), followed by obesity-related (33.60%, 95% CI 33.40% to 33.79%), age-related (14.72%, 95% CI 14.63% to 14.82%) and severe insulin-resistant groups. A significant association was found between the SLC16A11 diabetes risk variant and the obesity-related subgroup (OR 1.42, 95% CI 1.10 to 1.83, p=0.008). Among incident cases, we observed a greater incidence of mild obesity-related diabetes (n=149, 45.0%). In a diabetes outpatient clinic cohort, we observed increased 1-year risk (HR 1.59, 95% CI 1.01 to 2.51) and 2-year risk (HR 1.94, 95% CI 1.13 to 3.31) for incident retinopathy in the insulin-deficient group and decreased 2-year diabetic retinopathy risk for the obesity-related subgroup (HR 0.49, 95% CI 0.27 to 0.89).ConclusionsDiabetes subgroup phenotypes are reproducible using SNNN; our algorithm is available as web-based tool. Application of these models allowed for better characterization of diabetes subgroups and risk factors in Mexicans that could have clinical applications.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.