Mechanical properties of the adventitia are largely determined by the organization of collagen fibers. Measurements on the waviness and orientation of collagen, particularly at the zero-stress state, are necessary to relate the structural organization of collagen to the mechanical response of the adventitia. Using the fluorescence collagen marker CNA38-OG488 and confocal laser scanning microscopy, we imaged collagen fibers in the adventitia of rabbit common carotid arteries ex vivo. The arteries were cut open along their longitudinal axes to get the zero-stress state. We used semi-manual and automatic techniques to measure parameters related to the waviness and orientation of fibers. Our results showed that the straightness parameter (defined as the ratio between the distances of endpoints of a fiber to its length) was distributed with a beta distribution (mean value 0.72, variance 0.028) and did not depend on the mean angle orientation of fibers. Local angular density distributions revealed four axially symmetric families of fibers with mean directions of 0 • , 90 • , 43 • and −43 • , with respect to the axial direction of the artery, and corresponding circular standard deviations of 40 • , 47 • , 37 • and 37 • . The distribution of local orientations was shifted to the circumferential direction when measured in arteries at the zero-load state (intact), as compared to arteries at the zero-stress state (cutopen). Information on collagen fiber waviness and orientation, such as obtained in this study, could be used to develop structural models of the adventitia, providing better means for analyzing and understanding the mechanical properties of vascular wall.
The complex relationship between structural and functional connectivity, as measured by noninvasive imaging of the human brain, poses many unresolved challenges and open questions. Here, we apply analytic measures of network communication to the structural connectivity of the human brain and explore the capacity of these measures to predict resting-state functional connectivity across three independently acquired datasets. We focus on the layout of shortest paths across the network and on two communication measures-search information and path transitivitywhich account for how these paths are embedded in the rest of the network. Search information is an existing measure of information needed to access or trace shortest paths; we introduce path transitivity to measure the density of local detours along the shortest path. We find that both search information and path transitivity predict the strength of functional connectivity among both connected and unconnected node pairs. They do so at levels that match or significantly exceed path length measures, Euclidean distance, as well as computational models of neural dynamics. This capacity suggests that dynamic couplings due to interactions among neural elements in brain networks are substantially influenced by the broader network context adjacent to the shortest communication pathways.connectome | graph theory | network theory | brain connectivity T he topology and dynamics of brain networks are a central focus of the emerging field of connectomics (1). A growing number of studies of human brain networks carried out with modern noninvasive neuroimaging methods have begun to characterize the architecture of structural networks (2-4), as well as spatially distributed components (5-7) and time-varying dynamics (8) of functional networks. Although structural connectivity (SC) is inferred from diffusion imaging and tractography, functional connectivity (FC) is generally derived from pairwise correlations of time series recorded during "resting" brain activity, measured with functional magnetic resonance imaging (fMRI). Both networks define a multiplex system (9) in which the SC level shapes or imposes constraints on the FC level. Indeed, mounting evidence indicates that SC and FC are robustly related. Numerous studies have documented strong and significant correlations between the strengths of structural and functional connections at whole-brain (2, 10-13) and mesoscopic scales (14), as well as acute changes in FC after perturbation of SC (15).Although there is ample evidence documenting statistical relationships between SC and FC, the causal role of SC in shaping whole-brain patterns of FC is still only incompletely understood. There are numerous reports of strong FC among brain regions that are not directly structurally connected, an effect that has been ascribed to signal propagation along one or more indirect structural paths (11), or to network-wide contextual influence (16). The present paper builds on two interrelated premises. First, if SC plays a major causal role...
The human connectome represents a network map of the brain's wiring diagram and the pattern into which its connections are organized is thought to play an important role in cognitive function. The generative rules that shape the topology of the human connectome remain incompletely understood. Earlier work in model organisms has suggested that wiring rules based on geometric relationships (distance) can account for many but likely not all topological features. Here we systematically explore a family of generative models of the human connectome that yield synthetic networks designed according to different wiring rules combining geometric and a broad range of topological factors. We find that a combination of geometric constraints with a homophilic attachment mechanism can create synthetic networks that closely match many topological characteristics of individual human connectomes, including features that were not included in the optimization of the generative model itself. We use these models to investigate a lifespan dataset and show that, with age, the model parameters undergo progressive changes, suggesting a rebalancing of the generative factors underlying the connectome across the lifespan.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.