Chimeric antigen receptor (CAR) therapy targeting CD19 is an effective treatment for refractory B cell malignancies, especially acute lymphoblastic leukemia (ALL) . Although a majority of patients will achieve a complete response following a single infusion of CD19-targeted CAR-modified T cells (CD19 CAR T cells), the broad applicability of this treatment is hampered by severe cytokine release syndrome (CRS), which is characterized by fever, hypotension and respiratory insufficiency associated with elevated serum cytokines, including interleukin-6 (IL-6). CRS usually occurs within days of T cell infusion at the peak of CAR T cell expansion. In ALL, it is most frequent and more severe in patients with high tumor burden. CRS may respond to IL-6 receptor blockade but can require further treatment with high dose corticosteroids to curb potentially lethal severity. Improved therapeutic and preventive treatments require a better understanding of CRS physiopathology, which has so far remained elusive. Here we report a murine model of CRS that develops within 2-3 d of CAR T cell infusion and that is potentially lethal and responsive to IL-6 receptor blockade. We show that its severity is mediated not by CAR T cell-derived cytokines, but by IL-6, IL-1 and nitric oxide (NO) produced by recipient macrophages, which enables new therapeutic interventions.
Cellular senescence is characterized by stable cell cycle arrest and a secretory program that modulates the tissue microenvironment 1 , 2 . Physiologically, senescence serves as a tumor suppressive mechanism that prevents the expansion of premalignant cells 3 , 4 and plays a beneficial role in wound healing responses 5 , 6 . Pathologically, the aberrant accumulation of senescent cells generates an inflammatory milieu that leads to chronic tissue damage and contributes to diseases such as liver and lung fibrosis, atherosclerosis, diabetes, and osteoarthritis 1 , 7 . Accordingly, elimination of senescent cells from damaged tissues in mice ameliorates symptoms of these pathologies and even promotes longevity 1 , 2 , 8 – 10 . Here we test the therapeutic concept that chimeric antigen receptor (CAR) T cells targeting senescent cells can be effective senolytics. We identify the urokinase plasminogen activator receptor (uPAR) 11 as a cell surface protein broadly induced during senescence and demonstrate that uPAR-specific CAR T cells efficiently ablate senescent cells in vitro and in vivo . uPAR-directed CAR T cells extend the survival of mice harboring lung adenocarcinoma treated with a senescence-inducing drug combination, and restore tissue homeostasis in chemical- or diet-induced liver fibrosis. These results establish the therapeutic potential of senolytic CAR T cells for senescence-associated diseases.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.