Background
The fecal microbiota from obese individuals can induce obesity in animal models. In addition, studies in humans, animal models and dogs have revealed that the fecal microbiota of subjects with obesity is different from that of lean subjects and changes after weight loss. However, the impact of weight loss on the fecal microbiota in dogs with obesity has not been fully characterized.
Methods
In this study, we used 16S rRNA gene sequencing to investigate the differences in the fecal microbiota of 20 pet dogs with obesity that underwent a weight loss program. The endpoint of the weight loss program was individually tailored to the ideal body weight of each dog. In addition, we evaluated the qPCR based Dysbiosis Index before and after weight loss.
Results
After weight loss, the fecal microbiota structure of dogs with obesity changed significantly (weightedANOSIM; p = 0.016, R = 0.073), showing an increase in bacterial richness (p = 0.007), evenness (p = 0.007) and the number of bacterial species (p = 0.007). The fecal microbiota composition of obese dogs after weight loss was characterized by a decrease in Firmicutes (92.3% to 78.2%, q = 0.001), and increase in Bacteroidetes (1.4% to 10.1%, q = 0.002) and Fusobacteria (1.6% to 6.2%, q = 0.040). The qPCR results revealed an overall decrease in the Dysbiosis Index, driven mostly due to a significant decrease in E. coli (p = 0.030), and increase in Fusobacterium spp. (p = 0.017).
Conclusion
The changes observed in the fecal microbiota of dogs with obesity after weight loss with a weight loss diet rich in fiber and protein were in agreement with previous studies in humans, that reported an increase of bacterial biodiversity and a decrease of the ratio Firmicutes/Bacteroidetes.
Molecular-based approaches are rapidly developing in medicine for the evaluation of physiological and pathological conditions and discovery of new biomarkers in prevention and therapy. Fatty acid diversity and roles in health and disease in humans are topical subjects of lipidomics. In particular, membrane fatty acid-based lipidomics provides molecular data of relevance in the study of human chronic diseases, connecting metabolic, and nutritional aspects to health conditions. In veterinary medicine, membrane lipidomics, and fatty acid profiles have not been developed yet in nutritional approaches to health and in disease conditions. Using a protocol widely tested in human profiling, in the present study erythrocyte membrane lipidome was examined in 68 clinically healthy dogs, with different ages, sex, and sizes. In particular, a cluster composed of 10 fatty acids, present in membrane glycerophospholipids and representative of structural and functional properties of cell membrane, was chosen, and quantitatively analyzed. The interval values and distribution for each fatty acid of the cluster were determined, providing the first panel describing the healthy dog lipidomic membrane profile, with interesting correlation to bodyweight increases. This molecular information can be advantageously developed as benchmark in veterinary medicine for the evaluation of metabolic and nutritional status in healthy and diseased dogs.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.