Purpose Ribociclib (an oral, highly-specific cyclin-dependent kinase 4/6 inhibitor) inhibits tumor growth in preclinical models with intact retinoblastoma protein (Rb+). This first-in-human study investigated the maximum tolerated dose (MTD), recommended dose for expansion (RDE), safety, preliminary activity, pharmacokinetics, and pharmacodynamics of ribociclib in patients with Rb+ advanced solid tumors or lymphomas. Experimental Design Patients received escalating doses of ribociclib (3-weeks-on/1-week-off or continuous). Dose escalation was guided by a Bayesian Logistic Regression Model with overdose control principle. Results Among 132 patients, 125 received ribociclib 3-weeks-on/1-week-off and 7 were dosed continuously. Nine dose-limiting toxicities were observed among 70 MTD/RDE evaluable patients during Cycle 1, most commonly neutropenia (n = 3) and thrombocytopenia (n = 2). The MTD and RDE were established as 900 and 600 mg/day 3-weeks-on/1-week-off, respectively. Common treatment-related adverse events were (all-grade; grade 3/4) neutropenia (46%; 27%), leukopenia (43%; 17%), fatigue (45%; 2%), and nausea (42%; 2%). Asymptomatic Fridericia’s corrected QT prolongation was specific to doses ≥600 mg/day (9% of patients at 600 mg/day; 33% at doses >600 mg/day). Plasma exposure increases were slightly higher than dose proportional; mean half-life at the RDE was 32.6 hours. Reduced Ki67 was observed in paired skin and tumor biopsies, consistent with ribociclib-mediated antiproliferative activity. There were 3 partial responses and 43 patients achieved a best response of stable disease; 8 patients were progression-free for >6 months. Conclusion Ribociclib demonstrated an acceptable safety profile, dose-dependent plasma exposure, and preliminary signs of clinical activity. Phase I–III studies of ribociclib are underway in various indications.
Purpose: The cyclin-dependent kinase (CDK) 4/6 inhibitor, ribociclib (LEE011), displayed preclinical activity in neuroblastoma and malignant rhabdoid tumor (MRT) models. In this phase I study, the maximum tolerated dose (MTD) and recommended phase II dose (RP2D), safety, pharmacokinetics (PK), and preliminary activity of single-agent ribociclib were investigated in pediatric patients with neuroblastoma, MRT, or other cyclin D-CDK4/6-INK4-retinoblastoma pathwayaltered tumors.Experimental Design: Patients (aged 1-21 years) received escalating once-daily oral doses of ribociclib (3-weeks-on/1-week-off). Dose escalation was guided by a Bayesian logistic regression model with overdose control and real-time PK.Results: Thirty-two patients (median age, 5.5 years) received ribociclib 280, 350, or 470 mg/m 2 . Three patients had doselimiting toxicities of grade 3 fatigue (280 mg/m 2 ; n ¼ 1) or grade 4 thrombocytopenia (470 mg/m 2 ; n ¼ 2). Most common treatment-related adverse events (AE) were hematologic: neutropenia (72% all-grade/63% grade 3/4), leukopenia (63%/ 38%), anemia (44%/3%), thrombocytopenia (44%/28%), and lymphopenia (38%/19%), followed by vomiting (38%/0%), fatigue (25%/3%), nausea (25%/0%), and QTc prolongation (22%/0%). Ribociclib exposure was dose-dependent at 350 and 470 mg/m 2 [equivalent to 600 (RP2D)-900 mg in adults], with high interpatient variability. Best overall response was stable disease (SD) in nine patients (seven with neuroblastoma, two with primary CNS MRT); five patients achieved SD for more than 6, 6, 8, 12, and 13 cycles, respectively.Conclusions: Ribociclib demonstrated acceptable safety and PK in pediatric patients. MTD (470 mg/m 2 ) and RP2D (350 mg/m 2 ) were equivalent to those in adults. Observations of prolonged SD support further investigation of ribociclib combined with other agents in neuroblastoma and MRT.
BackgroundThe Oxford Cognitive Screen (OCS) was recently developed with the aim of describing the cognitive deficits after stroke. The scale consists of 10 tasks encompassing five cognitive domains: attention and executive function, language, memory, number processing, and praxis. OCS was devised to be inclusive and un-confounded by aphasia and neglect. As such, it may have a greater potential to be informative on stroke cognitive deficits of widely used instruments, such as the Mini-Mental State Examination (MMSE) or the Montreal Cognitive Assessment, which were originally devised for demented patients.ObjectiveThe present study compared the OCS with the MMSE with regards to their ability to detect cognitive impairments post-stroke. We further aimed to examine performance on the OCS as a function of subtypes of cerebral infarction and clinical severity.Methods325 first stroke patients were consecutively enrolled in the study over a 9-month period. The OCS and MMSE, as well as the Bamford classification and NIHSS, were given according to standard procedures.ResultsAbout a third of patients (35.3%) had a performance lower than the cutoff (<22) on the MMSE, whereas 91.6% were impaired in at least one OCS domain, indicating higher incidences of impairment for the OCS. More than 80% of patients showed an impairment in two or more cognitive domains of the OCS. Using the MMSE as a standard of clinical practice, the comparative sensitivity of OCS was 100%. Out of the 208 patients with normal MMSE performance 180 showed impaired performance in at least one domain of the OCS. The discrepancy between OCS and MMSE was particularly strong for patients with milder strokes. As for subtypes of cerebral infarction, fewer patients demonstrated widespread impairments in the OCS in the Posterior Circulation Infarcts category than in the other categories.ConclusionOverall, the results showed a much higher incidence of cognitive impairment with the OCS than with the MMSE and demonstrated no false negatives for OCS vs MMSE. It is concluded that OCS is a sensitive screen tool for cognitive deficits after stroke. In particular, the OCS detects high incidences of stroke-specific cognitive impairments, not detected by the MMSE, demonstrating the importance of cognitive profiling.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.