Two-dimensional (2D) metallic states induced by oxygen vacancies at oxide surfaces and interfaces provide new opportunities for the development of advanced applications, but the ability to control the behavior of these states is still limited. We used Angle Resolved Photoelectron Spectroscopy combined with density functional theory to study the reactivity of states induced by the oxygen vacancies at the (001)(14) surface of anatase TiO2, where both 2D metallic and deeper lying in-gap states (IGs) are observed. Remarkably, the two states exhibit very different evolution when the surface is exposed to molecular O2: while IGs are almost completely quenched, the metallic states are only weakly affected. The energy scale analysis for the vacancy migration and recombination resulting from the DFT calculations confirms indeed that only the IGs originate from and remain localized at the surface, whereas the metallic states originate from subsurface vacancies, whose migration and recombination at the surface is energetically less favorable rendering them therefore insensitive to oxygen dosing.
ARTICLE TEXTI.
The NiOOH electrode is commonly used in electrochemical
alcohol
oxidations. Yet understanding the reaction mechanism is far from trivial.
In many cases, the difficulty lies in the decoupling of the overlapping
influence of chemical and electrochemical factors that not only govern
the reaction pathway but also the crystal structure of the in situ formed oxyhydroxide. Here, we use a different approach
to understand this system: we start with synthesizing pure forms of
the two oxyhydroxides, β-NiOOH and γ-NiOOH. Then, using
the oxidative dehydrogenation of three typical alcohols as the model
reactions, we examine the reactivity and selectivity of each oxyhydroxide.
While solvent has a clear effect on the reaction rate of β-NiOOH,
the observed selectivity was found to be unaffected and remained over
95% for the dehydrogenation of both primary and secondary alcohols
to aldehydes and ketones, respectively. Yet, high concentration of
OH– in aqueous solvent promoted the preferential
conversion of benzyl alcohol to benzoic acid. Thus, the formation
of carboxylic compounds in the electrochemical oxidation without alkaline
electrolyte is more likely to follow the direct electrochemical oxidation
pathway. Overoxidation of NiOOH from the β- to γ-phase
will affect the selectivity but not the reactivity with a sustained
>95% conversion. The mechanistic examinations comprising kinetic
isotope
effects, Hammett analysis, and spin trapping studies reveal that benzyl
alcohol is oxidatively dehydrogenated to benzaldehyde via two consecutive hydrogen atom transfer steps. This work offers the
unique oxidative and catalytic properties of NiOOH in alcohol oxidation
reactions, shedding light on the mechanistic understanding of the
electrochemical alcohol conversion using NiOOH-based electrodes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.