Precision Viticulture is experiencing substantial growth thanks to the availability of improved and cost-effective instruments and methodologies for data acquisition and analysis, such as Unmanned Aerial Vehicles (UAV), that demonstrated to compete with traditional acquisition platforms, such as satellite and aircraft, due to low operational costs, high operational flexibility and high spatial resolution of imagery. In order to optimize the use of these technologies for precision viticulture, their technical, scientific and economic performances need to be assessed. The aim of this work is to compare NDVI surveys performed with UAV, aircraft and satellite, to assess the capability of each platform to represent the intra-vineyard vegetation spatial variability. NDVI images of two Italian vineyards were acquired simultaneously from different multi-spectral sensors onboard the OPEN ACCESS Remote Sens. 2015, 7 2972 three platforms, and a spatial statistical framework was used to assess their degree of similarity. Moreover, the pros and cons of each technique were also assessed performing a cost analysis as a function of the scale of application. Results indicate that the different platforms provide comparable results in vineyards characterized by coarse vegetation gradients and large vegetation clusters. On the contrary, in more heterogeneous vineyards, low-resolution images fail in representing part of the intra-vineyard variability. The cost analysis showed that the adoption of UAV platform is advantageous for small areas and that a break-even point exists above five hectares; above such threshold, airborne and then satellite have lower imagery cost.
Abstract. Due to the major role of the sun in heating the earth's surface, the atmospheric planetary boundary layer over land is inherently marked by a diurnal cycle. The afternoon transition, the period of the day that connects the daytime dry convective boundary layer to the night-time stable boundary layer, still has a number of unanswered scientific questions. This phase of the diurnal cycle is challenging from both modelling and observational perspectives: it is transitory, most of the forcings are small or null and the turbulence regime changes from fully convective, close to homogeneous and isotropic, toward a more heterogeneous and intermittent state.These issues motivated the BLLAST (Boundary-Layer Late Afternoon and Sunset Turbulence) field campaign that was conducted from 14 June to 8 July 2011 in southern France, in an area of complex and heterogeneous terrain. A wide range of instrumented platforms including full-size aircraft, remotely piloted aircraft systems, remote-sensing instruments, radiosoundings, tethered balloons, surface flux stations and various meteorological towers were deployed over different surface types. The boundary layer, from the earth's surface to the free troposphere, was probed during the entire day, with a focus and intense observation periods that were conducted from midday until sunset. The BLLAST field campaign also provided an opportunity to test innovative measurement systems, such as new miniaturized sensors, and a new technique for frequent radiosoundings of the low troposphere.Twelve fair weather days displaying various meteorological conditions were extensively documented during the field experiment. The boundary-layer growth varied from one day to another depending on many contributions including stability, advection, subsidence, the state of the previous day's residual layer, as well as local, meso-or synoptic scale conditions.Ground-based measurements combined with tetheredballoon and airborne observations captured the turbulence decay from the surface throughout the whole boundary layer and documented the evolution of the turbulence characteristic length scales during the transition period.Closely integrated with the field experiment, numerical studies are now underway with a complete hierarchy of models to support the data interpretation and improve the model representations.
Summary• A new design of free-air CO 2 enrichment (FACE) is presented that has been used to expose a poplar plantation to elevated atmospheric CO 2 concentrations in otherwise unaltered conditions, in the open.• This system releases pure CO 2 at high velocity, through a large number of small gas jets, causing rapid mixing between CO 2 and air. The theoretical and practical aspects of this design are described, with emphasis on the fluid mechanics of air-CO 2 mixing in sonic jets. Field performance data, including spectral analysis of shortterm fluctuations in CO 2 concentrations as well as temporal and spatial CO 2 control, are reported for the European project POPFACE facility.• Temporal and spatial performances of the operational POPFACE systems were adequate with average long-term CO 2 mole fractions on target. Averages over 1 min measured in the centre of the rings were within ± 20% and ± 10% of the target concentration for > 91% and > 75% of the time, respectively.• The data presented provide convincing evidence that a pure-CO 2 FACE system can achieve reliable control, in terms of the quality of the CO 2 control, with significant simplification of construction and reduced capital cost.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.