The central nervous system (CNS) constitutively expresses complement (C) membrane receptors and complement proteins, including the component C5a. This is a crucial terminal effector of the C cascade, mostly involved in pain and neuroinflammatory conditions. Aberrant activation of C5a protein and its receptor C5aR has been reported to play a critical role in neurodegenerative diseases, with important clinical consequences. Here we have investigated the effects of DF3016A, a novel selective C5aR antagonist, able to penetrate the blood-brain barrier (BBB), on cortical neurons exposed to oxygen-glucose deprivation-reoxygenation (OGD/R), a neuroinflammation-related process. We demonstrated that a mild ischemic insult induces an early upregulation of C5aR associated with the over-production of pro-inflammatory cytokines and the over-expression of the transcriptional regulatory factor miR-181. Furthermore, we report the first experimental evidence of the effect of DF3016A, modulating complement component C5a, on neurons in a model of injury. Interestingly, DF3016A protects neuronal viability by restoring intracellular calcium levels, thus opposing the increase in pro-inflammatory cytokine levels and miR-181 expression. Based on our results, we suggest that DF3016A is a novel C5aR antagonist promoting protective effects against OGD/R-induced damage that could be a new therapeutic approach to controlling CNS neuroinflammatory conditions.
Genetic and environmental factors are responsible for differences in the prevalence of some diseases across countries. Human leukocyte antigen (HLA) allele frequencies in North African populations show some differences in their distribution compared to Europeans, Mediterraneans, and sub-Saharans, and some specific alleles and haplotypes could be clinically relevant. Celiac disease (CD) has been fast increasing in prevalence in North Africa; but few immunogenetic data are available for this area, in which a high prevalence of the disease has been described. In this report, we assess and discuss results of HLA class II (HLA-DQA1/DQB1/DRB1) typing in Moroccan patients with CD and compare them with a control population from Morocco—genetically well characterized—and with other North African, Mediterranean, and European populations. The classical HLA-DQ associations were confirmed in Moroccans with CD. The high frequency of DQ2.5 homozygosity (45.2%) found in Moroccans with CD was noteworthy as compared with other populations (23%–32%). The genetic risk gradient for CD, identified by previous studies, has been confirmed in Moroccans with some differences, mainly concerning DQ8 genotypes. This study provides the immunogenetic framework of CD in Moroccans and confirms the need to learn more about associations with additional HLA and non-HLA genetic factors.
Brain-derived neurotrophic factor (BDNF) has a protective role in Alzheimer’s disease (AD). Oxidative stress and inflammatory cytokines are potentially implicated in AD risk. In this study, BDNF was detected in serum of AD and mild cognitive impairment (MCI) patients and investigated in association with gene polymorphisms of BDNF (Val66Met and C270T), of some oxidative stress-related genes (FOXO3A, SIRT3, GLO1, and SOD2), and of interleukin-1 family genes (IL-1α, IL-1β, and IL-38). The APOE status and mini-mental state examination (MMSE) score were also evaluated. Serum BDNF was significantly lower in AD (p = 0.029), especially when comparing the female subsets (p = 0.005). Patients with BDNFVal/Val homozygous also had significantly lower circulating BDNF compared with controls (p = 0.010). Moreover, lower BDNF was associated with the presence of the T mutant allele of IL-1α(rs1800587) in AD (p = 0.040). These results were even more significant in the female subsets (BDNFVal/Val, p = 0.001; IL-1α, p = 0.013; males: ns). In conclusion, reduced serum levels of BDNF were found in AD; polymorphisms of the IL-1α and BDNF genes appear to be involved in changes in serum BDNF, particularly in female patients, while no effects of other gene variants affecting oxidative stress have been found. These findings add another step in identifying gender-related susceptibility to AD.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.