Background NVX-CoV2373 is an adjuvanted, recombinant spike protein nanoparticle vaccine that was shown to have clinical efficacy for the prevention of coronavirus disease 2019 (Covid-19) in phase 2b–3 trials in the United Kingdom and South Africa, but its efficacy had not yet been tested in North America. Methods We conducted a phase 3, randomized, observer-blinded, placebo-controlled trial in the United States and Mexico during the first half of 2021 to evaluate the efficacy and safety of NVX-CoV2373 in adults (≥18 years of age) who had not had severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection. Participants were randomly assigned in a 2:1 ratio to receive two doses of NVX-CoV2373 or placebo 21 days apart. The primary objective was to determine vaccine efficacy against reverse-transcriptase–polymerase-chain-reaction–confirmed Covid-19 occurring at least 7 days after the second dose. Vaccine efficacy against moderate-to-severe disease and against different variants was also assessed. Results Of the 29,949 participants who underwent randomization between December 27, 2020, and February 18, 2021, a total of 29,582 (median age, 47 years; 12.6% ≥65 years of age) received at least one dose: 19,714 received vaccine and 9868 placebo. Over a period of 3 months, 77 cases of Covid-19 were noted — 14 among vaccine recipients and 63 among placebo recipients (vaccine efficacy, 90.4%; 95% confidence interval [CI], 82.9 to 94.6; P<0.001). Ten moderate and 4 severe cases occurred, all in placebo recipients, yielding vaccine efficacy against moderate-to-severe disease of 100% (95% CI, 87.0 to 100). Most sequenced viral genomes (48 of 61, 79%) were variants of concern or interest — largely B.1.1.7 (alpha) (31 of the 35 genomes for variants of concern, 89%). Vaccine efficacy against any variant of concern or interest was 92.6% (95% CI, 83.6 to 96.7). Reactogenicity was mostly mild to moderate and transient but was more frequent among NVX-CoV2373 recipients than among placebo recipients and was more frequent after the second dose than after the first dose. Conclusions NVX-CoV2373 was safe and effective for the prevention of Covid-19. Most breakthrough cases were caused by contemporary variant strains. (Funded by Novavax and others; PREVENT-19 ClinicalTrials.gov number, NCT04611802 .)
Although infections among vaccinated individuals lead to milder COVID-19 symptoms relative to unvaccinated subjects, the specificity and durability of antibody responses elicited by breakthrough cases remain unknown. Here, we demonstrate that breakthrough infections induce serum binding and neutralizing antibody responses that are markedly more potent, durable and resilient to spike mutations observed in variants than those in subjects who received only two doses of vaccine. However, we show that breakthrough cases, subjects who were vaccinated after infection and individuals vaccinated three times have serum neutralizing activity of comparable magnitude and breadth, indicating that increased number of exposures to SARS-CoV-2 antigen(s) enhance the quality of antibody responses. Neutralization of SARS-CoV was moderate, however, underscoring the importance of developing vaccines eliciting broad sarbecovirus immunity for pandemic preparedness.
This diagnostic study compares unsupervised home self-collected midnasal swabs vs clinician-collected nasopharyngeal swabs for the detection of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2).
BACKGROUND Vaccination using severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) spike (S) protein antigen has been effective in the prevention of coronavirus disease 2019 (Covid-19). NVX-CoV2373 is an adjuvanted, recombinant S protein nanoparticle vaccine that demonstrated clinical efficacy for prevention of Covid-19 in phase 2b/3 trials in the United Kingdom and South Africa. METHODS This phase 3, randomized, observer-blinded, placebo-controlled trial evaluated the efficacy and safety of NVX-CoV2373 in adults ≥18 years of age in the United States and Mexico during the first quarter of 2021. Participants were randomized in a 2:1 ratio to receive two doses of NVX-CoV2373 or placebo 21 days apart. The primary end point was vaccine efficacy (VE) against reverse transcriptase-polymerase chain reaction-confirmed Covid-19 in SARS-CoV-2-naive participants ≥7 days after the second dose administration. RESULTS Of the 29,949 participants randomized between December 27, 2020, and February 18, 2021, 29,582 (median age: 47 years, 12.6% ≥65 years) received ≥1 dose: 19,714 received vaccine and 9868 placebo. In the per-protocol population, there were 77 Covid-19 cases; 14 among vaccine and 63 among placebo recipients (VE: 90.4%, 95% confidence interval [CI] 82.9 to 94.6, P<0.001). All moderate-to-severe cases occurred in placebo recipients, yielding VE of 100% (95% CI 87.0 to 100). Most sequenced viral genomes (48/61, 78.7%) were variants of concern (VOC) or interest (VOI), mainly represented by variant alpha/B.1.1.7 (31/35, 88.6% VOC identified). VE against any VOC/VOI was 92.6% (95% CI 83.6 to 96.7). Reactogenicity was mostly mild-to-moderate and transient, but more frequent in NVX-CoV2373 recipients and after the second dose. Serious adverse events were rare and evenly distributed between treatments. CONCLUSIONS NVX-CoV2373 was well tolerated and demonstrated a high overall VE (>90%) for prevention of Covid-19, with most cases due to variant strains. (Funded by the Office of the Assistant Secretary for Preparedness and Response, Biomedical Advanced Research and Development Authority and the National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health; PREVENT-19 ClinicalTrials.gov number, NCT04611802.)
With the COVID‐19 pandemic caused by SARS‐CoV‐2 now in its second year, there remains an urgent need for diagnostic testing that can identify infected individuals, particularly those who harbor infectious virus. Various RT–PCR strategies have been proposed to identify specific viral RNA species that may predict the presence of infectious virus, including detection of transcriptional intermediates (e.g., subgenomic RNA [sgRNA]) and replicative intermediates (e.g., negative‐strand RNA species). Using a novel primer/probe set for detection of subgenomic (sg)E transcripts, we successfully identified 100% of specimens containing culturable SARS‐CoV‐2 from a set of 126 clinical samples (total sgE CT values ranging from 12.3 to 37.5). This assay showed superior performance compared to a previously published sgRNA assay and to a negative‐strand RNA assay, both of which failed to detect target RNA in a subset of samples from which we isolated live virus. In addition, total levels of viral RNA (genome, negative‐strand, and sgE) detected with the WHO/Charité primer‐probe set correlated closely with levels of infectious virus. Specifically, infectious virus was not detected in samples with a CT above 31.0. Clinical samples with higher levels of viral RNA also displayed cytopathic effect (CPE) more quickly than those with lower levels of viral RNA. Finally, we found that the infectivity of SARS‐CoV‐2 samples is significantly dependent on the cell type used for viral isolation, as Vero E6 cells expressing TMRPSS2 extended the analytical sensitivity of isolation by more than 3 CT compared to parental Vero E6 cells and resulted in faster isolation. Our work shows that using a total viral RNA Ct cutoff of > 31 or specifically testing for sgRNA can serve as an effective rule‐out test for the presence of culturable virus.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.