Colloidal nanocrystal quantum dots (QDs) are solution-processable chromophores with size-tunable bandgaps, high photoluminescence (PL) quantum efficiency (QE), excellent photostability, narrow emission line widths (< 30 nm), and large spin-orbit coupling. These factors make them good candidates for use in next-generation thin-film optoelectronic devices. Indeed, colloidal QDs are currently being explored for use in photovoltaics, [1][2][3][4] photodetectors, [5,6] and light emitting diodes, [7][8][9][10][11][12][13][14][15][16][17][18] often in hybrid structures that incorporate both QDs and conjugated polymers or small-molecule organic semiconductors. Despite the potential advantages of using QDs as emitters, early QD light-emitting diodes (QD-LEDs) exhibited low efficiencies, and often produced broad voltage-dependent emission with spectral contributions from both the QDs and the organic host materials. However, drawing from lessons learned from the field of all-organic LEDs, the MIT group reported a multilayer LED structure incorporating a monolayer of CdSe/ZnS core/shell QDs sandwiched between small molecule hole and electron transport layers. These devices exhibited a maximum external quantum efficiency (Q ext ) of ∼ 0.5 % and a luminous efficiency (LE) of 1.9 cd/ A at a brightness of 100 cd/ m 2 , although pure emission spectra at high brightness were not achieved in the initial report. [8,16] With subsequent refinements, the same authors have achieved maximum Q ext of > 2 % and luminous power efficiency (LPE) > 1 lm/W.[17]Recently, we reported an alternative strategy for QD-LED fabrication that allows for independent control of the QD and hole-transport layer (HTL) thicknesses by spin-coating the QD layer onto a thermally cross-linked HTL.[18] Using this flexible fabrication strategy, we demonstrated that graded structures comprising multiple hole-transport and injection layers could be used to further improve Q ext of the devices. The best devices exhibited good efficiency (Q ext > 0.8 % at 100 cd/ m 2 ), narrow EL spectra (∼ 30 nm FWHM) and maximum brightness in excess of 1000 cd/ m 2 . However, because of the high turn-on voltage for our first QD-LEDs, the LPE was not high.Herein, we describe how a substantial improvement in QD-LED performance, especially the LPE, can be obtained both by using an improved polymer hole-injection layer (HIL)/ HTL structure and by performing a thermal annealing of the QD layer prior to the final deposition of the organic electrontransport layer. In particular, the annealing step results in a significant performance improvement with these devices. In order to lay the scientific groundwork for future improvements in QD-LED performance, we characterize the changes in the chemical, photophysical, and electronic properties of the structures that occur due to the annealing process.