We report a rapid solution-phase strategy to synthesize alloyed PtNi nanoparticles which demonstrate outstanding functionality for the oxygen reduction reaction (ORR). This one-pot coreduction colloidal synthesis results in a monodisperse population of single-crystal nanoparticles of rhombic dodecahedral morphology with Pt-enriched edges and compositions close to Pt 1 Ni 2 . We use nanoscale 3D compositional analysis to reveal for the first time that oleylamine (OAm)-aging of the rhombic dodecahedral Pt 1 Ni 2 particles results in Ni leaching from surface facets, producing aged particles with concave faceting, an exceptionally high surface area, and a composition of Pt 2 Ni 1 . We show that the modified atomic nanostructures catalytically outperform the original PtNi rhombic dodecahedral particles by more than two-fold and also yield improved cycling durability. Their functionality for the ORR far exceeds commercially available Pt/C nanoparticle electrocatalysts, both in terms of mass-specific activities (up to a 25-fold increase) and intrinsic area-specific activities (up to a 27-fold increase).
Organic semiconductors (OSCs) promise to deliver next‐generation electronic and energy devices that are flexible, scalable and printable. Unfortunately, realizing this opportunity is hampered by increasing concerns about the use of volatile organic compounds (VOCs), particularly toxic halogenated solvents that are detrimental to the environment and human health. Here, a cradle‐to‐grave process is reported to achieve high performance p‐ and n‐type OSC devices based on indacenodithiophene and diketopyrrolopyrrole semiconducting polymers that utilizes aqueous‐processes, fewer steps, lower reaction temperatures, a significant reduction in VOCs (>99%) and avoids all halogenated solvents. The process involves an aqueous mini‐emulsion polymerization that generates a surfactant‐stabilized aqueous dispersion of OSC nanoparticles at sufficient concentration to permit direct aqueous processing into thin films for use in organic field‐effect transistors. Promisingly, the performance of these devices is comparable to those prepared using conventional synthesis and processing procedures optimized for large amounts of VOCs and halogenated solvents. Ultimately, the holistic approach reported addresses the environmental issues and enables a viable guideline for the delivery of future OSC devices using only aqueous media for synthesis, purification and thin‐film processing.
High‐entropy (HE) metal chalcogenides are a class of materials that have great potential in applications such as thermoelectrics and electrocatalysis. Layered 2D transition‐metal dichalcogenides (TMDCs) are a sub‐class of high entropy metal chalcogenides that have received little attention to date as their preparation currently involves complicated, energy‐intensive, or hazardous synthetic steps. To address this, a low‐temperature (500 °C) and rapid (1 h) single source precursor approach is successfully adopted to synthesize the hexernary high‐entropy metal disulfide (MoWReMnCr)S2. (MoWReMnCr)S2 powders are characterized by powder X‐ray diffraction (pXRD) and Raman spectroscopy, which confirmed that the material is comprised predominantly of a hexagonal phase. The surface oxidation states and elemental compositions are studied by X‐ray photoelectron spectroscopy (XPS) whilst the bulk morphology and elemental stoichiometry with spatial distribution is determined by scanning electron microscopy (SEM) with elemental mapping information acquired from energy‐dispersive X‐ray (EDX) spectroscopy. The bulk, layered material is subsequently exfoliated to ultra‐thin, several‐layer 2D nanosheets by liquid‐phase exfoliation (LPE). The resulting few‐layer HE (MoWReMnCr)S2 nanosheets are found to contain a homogeneous elemental distribution of metals at the nanoscale by high angle annular dark field‐scanning transmission electron microscopy (HAADF‐STEM) with EDX mapping. Finally, (MoWReMnCr)S2 is demonstrated as a hydrogen evolution electrocatalyst and compared to 2H‐MoS2 synthesized using the molecular precursor approach. (MoWReMnCr)S2 with 20% w/w of high‐conductivity carbon black displays a low overpotential of 229 mV in 0.5 M H2SO4 to reach a current density of 10 mA cm−2, which is much lower than the overpotential of 362 mV for MoS2. From density functional theory calculations, it is hypothesised that the enhanced catalytic activity is due to activation of the basal plane upon incorporation of other elements into the 2H‐MoS2 structure, in particular, the first row TMs Cr and Mn.
Treatment of p-tert-butylcalix[6]areneH6 (L(6)H6) with in situ [LiVO(Ot-Bu)4] afforded, after work-up, the dark green complex [Li(MeCN)4][V2(O)2Li(MeCN)(L(6)H2)2]·8MeCN (1·8MeCN). On one occasion, the reaction led to the formation of a mixture of products, the bulk of which differing from 1 only in the amount of solvate, viz.2·9.67MeCN. The second minor, yellow product has the formula {[(VO2)2(L(6)H2)(Li(MeCN)2)2]·2MeCN}n (3·2MeCN), and comprises a 1D polymeric structure with links through the L(6)H2 ligand and Li2O2 units. When the reverse order of addition was employed such that lithium tert-butoxide (7.5 equivalents) was added to L(6)H6, and subsequently treated with VOCl3 (2 equiv.), the complex {[VO(THF)][VO(μ-O)]2Li(THF)(Et2O)][L(6)]}·2Et2O·0.5THF (4·2Et2O·0.5THF), which contains a trinuclear motif possessing a central, octahedral vanadyl centre linked via oxo bridges to two tetrahedral (C3v) vanadyl centres, was isolated. The calix[6]arene in 4 is severely twisted and adopts a ‘down, down, down, down, out, out’ conformation. Use of excess lithium tert-butoxide led to a complex very similar to 4, differing only in the solvent of crystallization, namely 5·Et2O·2THF. The ability of 1 and 5 to act as pre-catalysts for ethylene polymerization in the presence of a variety of co-catalysts and under various conditions has been investigated. Co-polymerization of ethylene with propylene and with 1-hexene have also been conducted; results are compared versus VO(OEt)Cl2.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.