Recent advances in fuel cell (FC) and microbial fuel cell (MFC) research have demonstrated these electrochemical technologies as effective methods for generating electrical power from chemical fuels and organic compounds. This led to the development of MFC-inspired photovoltaic (BPV) devices that produce electrical power by harvesting solar energy through biological activities of photosynthetic organisms. We describe the fabrication of a BPV device with multiple microchannels. This allows a direct comparison between sub-cellular photosynthetic organelles and whole cells, and quantitative analysis of the parameters affecting power output. Electron transfer within the photosynthetic materials was studied using the metabolic inhibitors DCMU (3-(3,4-dichlorophenyl)-1,1-dimethylurea) and methyl viologen (1,1 0 -dimethyl-4,4 0 -bipyridinium dichloride). These experiments suggest that the electrons that cause an increase in power upon illumination leave the photosynthetic electron transfer chain from the reducing end of photosystem I. Several key factors limiting performance efficiency, including density of the photosynthetic catalyst, electron carrier concentration, and light intensity were investigated.
Emptying of an initially water-filled horizontal PVC pipeline driven by different upstream compressed air pressures and with different outflow restriction conditions, with motion of an air-water front through the pressurized pipeline, is investigated experimentally. Simple numerical modeling is used to interpret the results, especially the observed additional shortening of the moving full water column due to formation of a stratified water-air "tail." Measured discharges, water-level changes, and pressure variations along the pipeline during emptying are compared using control volume (CV) model results. The CV model solutions for a nonstratified case are shown to be delayed as compared with the actual measured changes of flow rate, pressure, and water level. But by considering water-column mass loss due to the water-air tail and residual motion, the calibrated CV model yields solutions that are qualitatively in good agreement with the experimental results. A key interpretation is that the long air-cavity celerity is close to its critical value at the instant of minimum flow acceleration. The influences of driving pressure, inertia, and friction predominate, with the observed water hammer caused by the initiating downstream valve opening insignificantly influencing the water-air front propagation.
The hydroxyl radical (OH(•)) is the most potent yet short-lived of the reactive oxygen species (ROS) radicals. Just as hydrogen peroxide was once considered to be simply a deleterious by-product of oxidative metabolism but is now acknowledged to have signalling roles in plant cells, so evidence is mounting for the hydroxyl radical as being more than merely an agent of destruction. Its oxidative power is harnessed to facilitate germination, growth, stomatal closure, reproduction, the immune response, and adaptation to stress. It features in plant cell death and is a key tool in microbial degradation of plant matter for recycling. Production of the hydroxyl radical in the wall, at the plasma membrane, and intracellularly is facilitated by a range of peroxidases, superoxide dismutases, NADPH oxidases, and transition metal catalysts. The spatio-temporal activity of these must be tightly regulated to target substrates precisely to the site of radical production, both to prevent damage and to accommodate the short half life and diffusive capacity of the hydroxyl radical. Whilst research has focussed mainly on the hydroxyl radical's mode of action in wall loosening, studies now extend to elucidating which proteins are targets in signalling systems. Despite the difficulties in detecting and manipulating this ROS, there is sufficient evidence now to acknowledge the hydroxyl radical as a potent regulator in plant cell biology.
The anode plays a critical role relating to the energy density in all‐solid‐state lithium batteries (ASLBs). Silicon (Si) and lithium (Li) metal are two of the most attractive anodes because of their ultrahigh theoretical capacities. However, most investigations focus on Li metal, leaving the great potential of Si underrated. This work investigates the stability, processability, and cost of Si anodes in ASLBs and compares them with Li metal. Moreover, single‐crystal LiNi0.8Mn0.1Co0.1O2 is stabilized with lithium silicate (Li2SiOx) through a scalable sol–gel method. ASLBs with a cell‐level energy density of 285 Wh kg−1 are obtained by sandwiching the Si anode, the thin sulfide solid‐state electrolyte membrane, and the interface stabilized LiNi0.8Mn0.1Co0.1O2. The full cell delivers a high capacity of 145 mAh g−1 at C/3 and maintains stability for 1000 cycles. This work inspires commercialization of ASLBs on a large scale with exciting manufacturing lines for large‐scale, safe, and economical energy storage.
Document VersionPublisher's PDF, also known as Version of Record (includes final page, issue and volume numbers) Please check the document version of this publication:• A submitted manuscript is the author's version of the article upon submission and before peer-review. There can be important differences between the submitted version and the official published version of record. People interested in the research are advised to contact the author for the final version of the publication, or visit the DOI to the publisher's website.• The final author version and the galley proof are versions of the publication after peer review.• The final published version features the final layout of the paper including the volume, issue and page numbers. Link to publication General rightsCopyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.• Users may download and print one copy of any publication from the public portal for the purpose of private study or research.• You may not further distribute the material or use it for any profit-making activity or commercial gain • You may freely distribute the URL identifying the publication in the public portal ? Take down policyIf you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim. ABSTRACTThis study presents results from detailed experiments of the two-phase pressurized flow behavior during the rapid filling of a large-scale pipeline. The physical scale of this experiment is close to the practical situation in many industrial plants. Pressure transducers, water level meters, thermometers, void fraction meters and flow meters were used to measure the two-phase unsteady flow dynamics. The main focus is on the water-air interface evolution during filling and the overall behavior of the lengthening water column. It is observed that the leading liquid front does not entirely fill the pipe cross section; flow stratification and mixing occurs. Although flow regime transition is a rather complex phenomenon, certain features of the observed transition pattern are explained qualitatively and quantitatively. The water flow during the entire filling behaves as a rigid column as the open empty pipe in front of the water column provides sufficient room for the water column to occupy without invoking air compressibility effects. As a preliminary evaluation of how these large-scale experiments can feed into improving mathematical modeling of rapid pipe filling, a comparison with a typical one-dimensional rigid-column model is made.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.