Background RT-PCR has become the primary method to diagnose viral diseases, including SARS-CoV-2. RT-PCR detects RNA, not infectious virus, thus its ability to determine duration of infectivity of patients is limited. Infectivity is a critical determinant in informing public health guidelines/interventions. Our goal was to determine the relationship between E gene SARS-CoV-2 RT-PCR cycle threshold (Ct) values from respiratory samples, symptom onset to test (STT) and infectivity in cell culture. Methods In this retrospective cross-sectional study, we took SARS-CoV-2 RT-PCR confirmed positive samples and determined their ability to infect Vero cell lines. Results Ninety RT-PCR SARS-CoV-2 positive samples were incubated on Vero cells. Twenty-six samples (28.9%) demonstrated viral growth. Median TCID50/ml was 1780 (282-8511). There was no growth in samples with a Ct > 24 or STT > 8 days. Multivariate logistic regression using positive viral culture as a binary predictor variable, STT and Ct demonstrated an odds ratio for positive viral culture of 0.64 (95% CI 0.49-0.84, p<0.001) for every one unit increase in Ct. Area under the receiver operating characteristic curve for Ct vs. positive culture was OR 0.91 (95% CI 0.85-0.97, p<0.001), with 97% specificity obtained at a Ct of >24. Conclusions SARS-CoV-2 Vero cell infectivity was only observed for RT-PCR Ct < 24 and STT < 8 days. Infectivity of patients with Ct >24 and duration of symptoms >8 days may be low. This information can inform public health policy and guide clinical, infection control and occupational health decisions. Further studies of larger size are needed.
The Ebola virus disease (EVD) epidemic in West Africa is the largest on record, responsible for >28,599 cases and >11,299 deaths 1. Genome sequencing in viral outbreaks is desirable in order to characterize the infectious agent to determine its evolutionary rate, signatures of host adaptation, identification and monitoring of diagnostic targets and responses to vaccines and treatments. The Ebola virus genome (EBOV) substitution rate in the Makona strain has been estimated at between 0.87 × 10−3 to 1.42 × 10−3 mutations per site per year. This is equivalent to 16 to 27 mutations in each genome, meaning that sequences diverge rapidly enough to identify distinct sub-lineages during a prolonged epidemic 2-7. Genome sequencing provides a high-resolution view of pathogen evolution and is increasingly sought-after for outbreak surveillance. Sequence data may be used to guide control measures, but only if the results are generated quickly enough to inform interventions 8. Genomic surveillance during the epidemic has been sporadic due to a lack of local sequencing capacity coupled with practical difficulties transporting samples to remote sequencing facilities 9. In order to address this problem, we devised a genomic surveillance system that utilizes a novel nanopore DNA sequencing instrument. In April 2015 this system was transported in standard airline luggage to Guinea and used for real-time genomic surveillance of the ongoing epidemic. Here we present sequence data and analysis of 142 Ebola virus (EBOV) samples collected during the period March to October 2015. We were able to generate results in less than 24 hours after receiving an Ebola positive sample, with the sequencing process taking as little as 15-60 minutes. We show that real-time genomic surveillance is possible in resource-limited settings and can be established rapidly to monitor outbreaks.
Without an approved vaccine or treatment, Ebola outbreak management has been limited to palliative care and barrier methods to prevent transmission. These approaches, however, have yet to end the 2014 outbreak of Ebola after its prolonged presence in West Africa. Here we show that a combination of monoclonal antibodies (ZMapp™), optimized from two previous antibody cocktails, is able to rescue 100% of rhesus macaques when treatment is initiated up to 5 days post-challenge. High fever, viremia, and abnormalities in blood count and chemistry were evident in many animals before ZMapp™ intervention. Advanced disease, as indicated by elevated liver enzymes, mucosal hemorrhages and generalized petechia could be reversed, leading to full recovery. ELISA and neutralizing antibody assays indicate that ZMapp™ is cross-reactive with the Guinean variant of Ebola. ZMapp™ currently exceeds all previous descriptions of efficacy with other therapeutics, and results warrant further development of this cocktail for clinical use.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.