Diet has been suggested to be a potential environmental risk factor for the increasing incidence of autoimmune diseases, yet the underlying mechanisms remain elusive. Here, we show that high glucose intake exacerbated autoimmunity in mouse models of colitis and experimental autoimmune encephalomyelitis (EAE). We elucidated that high amounts of glucose specifically promoted T helper-17 (Th17) cell differentiation by activating transforming growth factor-b (TGF-b) from its latent form through upregulation of reactive oxygen species (ROS) in T cells. We further determined that mitochondrial ROS (mtROS) are key for high glucoseinduced TGF-b activation and Th17 cell generation. We have thus revealed a previously unrecognized mechanism underlying the adverse effects of high glucose intake in the pathogenesis of autoimmunity and inflammation.
Summary
Cutaneous wound healing is associated with the unpleasant sensation of itching. Here we investigated the mechanisms underlying this type of itch, focusing on the contribution of soluble factors released during healing. We found high amounts of interleukin 31 (IL-31) in skin wound tissue during the peak of itch responses.
Il31
−/−
mice lacked wound-induced itch responses. IL-31 was released by dermal conventional type 2 dendritic cells (cDC2s) recruited to wounds and increased itch sensory neuron sensitivity. Transfer of cDC2s isolated from late-stage wounds into healthy skin was sufficient to induce itching in a manner dependent on IL-31 expression. Addition of the cytokine TGF-β1, which promotes wound healing, to dermal DCs
in vitro
was sufficient to induce
Il31
expression, and
Tgfbr1
f/f
CD11c-Cre mice exhibited reduced scratching and decreased
Il31
expression in wounds
in vivo
. Thus, cDC2s promote itching during skin would healing via a TGF-β-IL-31 axis with implications for treatment of wound itching.
The molecular pathways underlying the development of innate lymphoid cells (ILCs) are mostly unknown. Here we show that TGF-β signaling programs the development of ILC2s from their progenitors. Specifically, the deficiency of TGF-β receptor II in bone marrow progenitors results in inefficient development of ILC2s, but not ILC1s or ILC3s. Mechanistically, TGF-β signaling is required for the generation and maintenance of ILC2 progenitors (ILC2p). In addition, TGF-β upregulates the expression of the IL-33 receptor gene Il1rl1 (encoding IL-1 receptor-like 1, also known as ST2) in ILC2p and common helper-like innate lymphoid progenitors (CHILP), at least partially through the MEK-dependent pathway. These findings identify a function of TGF-β in the development of ILC2s from their progenitors.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.