Histone modifications deposited by the Polycomb repressive complex 2 (PRC2) play a critical role in the control of growth, development, and adaptation to environmental fluctuations of most multicellular eukaryotes. The catalytic activity of PRC2 is counteracted by Jumonji-type (JMJ) histone demethylases, which shapes the genomic distribution of H3K27me3. Here, we show that two JMJ histone demethylases in Arabidopsis, EARLY FLOWERING 6 (ELF6) and RELATIVE OF EARLY FLOWERING 6 (REF6), play distinct roles in H3K27me3 and H3K27me1 homeostasis. We show that failure to reset these chromatin marks during sexual reproduction results in the transgenerational inheritance of histone marks, which cause a loss of DNA methylation at heterochromatic loci and transposon activation. Thus, Jumonji-type histone demethylases play a dual role in plants by helping to maintain transcriptional states through development and safeguard genome integrity during sexual reproduction.
Although plants are able to withstand a range of environmental conditions, spikes in ambient temperature can impact plant fertility causing reductions in seed yield and significant economic losses 1,2 . Therefore, understanding the precise molecular mechanisms that underpin plant fertility under environmental constraints is critical to safeguard future food production 3 .Here, we identified two Argonaute-like proteins whose activities are required to sustain male fertility in maize plants under high temperatures. We found that MALE-ASSOCIATED ARGONAUTE 1 and 2 (MAGO1 and MAGO2) associate with temperature-induced phased secondary small RNAs in pre-meiotic anthers and are essential to control the activity of
Histone modifications deposited by the Polycomb repressive complex 2 (PRC2) play a critical role in the control of growth, development and adaptation to environmental fluctuations in most multicellular eukaryotes. The catalytic activity of PRC2 is counteracted by Jumonji-type (JMJ) histone demethylases, which shapes the genomic distribution of H3K27me3. Here, we show that two JMJ histone demethylases in Arabidopsis, EARLY FLOWERING 6 (ELF6) and RELATIVE OF EARLY FLOWERING 6 (REF6), play distinct roles in H3K27me3 and H3K27me1 homeostasis. We show that failure to reset these chromatin marks during sexual reproduction results in the inheritance of epigenetic imprints, which cause a loss of DNA methylation at heterochromatic loci and transposon activation. Thus, Jumonji-type histone demethylases in plants contribute towards maintaining distinct transcriptional states during development and help safeguard genome integrity following sexual reproduction.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.