In patients with PTC, BRAF mutation is associated with poorer clinicopathological outcomes and independently predicts recurrence. Therefore, BRAF mutation may be a useful molecular marker to assist in risk stratification for patients with PTC.
Papillary thyroid carcinomas (PTCs) that invade into local structures are associated with a poor prognosis, but the mechanisms for PTC invasion are incompletely defined, limiting the development of new therapies. To characterize biological processes involved in PTC invasion, we analyzed the gene expression profiles of microscopically dissected intratumoral samples from central and invasive regions of seven widely invasive PTCs and normal thyroid tissue by oligonucleotide microarray and performed confirmatory expression and functional studies. In comparison with the central regions of primary PTCs, the invasive fronts overexpressed TGF , NFB and integrin pathway members, and regulators of small G proteins and CDC42. Moreover, reduced levels of mRNAs encoding proteins involved in cell-cell adhesion and communication were identified, consistent with epithelial-to-mesenchymal transition (EMT). To confirm that aggressive PTCs were characterized by EMT, 34 additional PTCs were examined for expression of vimentin, a hallmark of EMT. Overexpression of vimentin was associated with PTC invasion and nodal metastasis. Functional, in vitro studies demonstrated that vimentin was required both for the development and maintenance of a mesenchymal morphology and invasiveness in thyroid cancer cells. We conclude that EMT is common in PTC invasion and that vimentin regulates thyroid cancer EMT in vitro.cdc42 ͉ runx2 ͉ thyroid cancer ͉ vimentin T hyroid carcinoma is the most common classical endocrine malignancy, and its incidence is rising rapidly, due almost entirely to an increase in papillary thyroid carcinoma (PTC) diagnoses (1). Patients diagnosed with PTC at an early stage have an excellent prognosis; however, individuals with large, invasive tumors and/or distant metastases have a 5-year survival rate of Ϸ40% (2, 3). Thus, there is a need to better understand the molecular causes of thyroid cancer progression to develop new treatment options.The genetic defects believed to be responsible for PTC initiation have been identified in the majority of cases; these include genetic rearrangements involving the tyrosine kinase domain of RET and activating mutations of BRAF and RAS (3-5). Although some correlation studies support an association between specific genetic alterations and aggressive cancer behavior (6-9), there are a number of events that are found nearly exclusively in aggressive PTCs, including mutations of P53 (10, 11), dysregulated -catenin signaling (12), up-regulation of cyclin D1 (13), and overexpression of metastasis-promoting, angiogenic, and/or cell adhesion-related genes (14-20). We have determined that invasive regions of primary PTCs are frequently characterized by enhanced Akt activity and cytosolic p27 localization (21, 22). We, and others, have also demonstrated functional roles for PI3 kinase, Akt, and p27 in PTC cell invasion in vitro (16,23,24). However, the correlation between increased Akt activity and invasion was not found for PTCs with activating BRAF mutations. Most importantly, these focused s...
Introduction: Akt activation is involved in the pathogenesis of inherited thyroid cancer in Cowden's syndrome and in sporadic thyroid cancers. In cell culture, Akt regulates thyroid cell growth and survival; but recent data suggest that Akt also regulates cell motility in non-thyroid cell lines. We therefore sought to evaluate the role of Akt in thyroid cancer progression. Methods: We evaluated 46 thyroid cancer, 20 thyroid follicular adenoma, and adjacent normal tissues samples by immunohistochemistry for activated Akt (pAkt), Akt 1, 2, and 3, and p27 expression. Immunoblots were performed in 14 samples. Results: Akt activation was identified in 10/10 follicular cancers, 26/26 papillary cancers, and 2/10 follicular variant of papillary cancers, but in only 4/66 normal tissue samples and 2/10 typical benign follicular adenomas. Immunoactive pAkt was greatest in regions of capsular invasion; and was localised to the nucleus in follicular cancers and the cytoplasm in papillary cancers, except for invasive regions of papillary cancers where it localised to both compartments. Immunoactive Akt 1, but not Akt 2 or Akt 3, correlated with pAkt localisation, and nuclear pAkt was associated with cytoplasmic expression of p27. In vitro studies using human thyroid cancer cells demonstrated that nuclear translocation of Akt 1 and pAkt were associated with cytoplasmic p27 and cell invasion and migration. Cell migration and the localisation of Akt 1, pAkt, and p27 were inhibited by PI3 kinase, but not MEK inhibition. Discussion: These data suggest an important role for nuclear activation of Akt 1 in thyroid cancer progression.
The high prevalence of BRAF mutation in lymph node-metastasized PTC tissues from BRAF mutation-positive primary tumors and the possible de novo formation of BRAF mutation in lymph node-metastasized PTC were consistent with a role of BRAF mutation in facilitating the metastasis and progression of PTC in lymph nodes.
A high prevalence of activating mutation of the B type Raf kinase (BRAF) gene was recently reported in papillary thyroid cancer (PTC). However, the frequency of this mutation in several other types of thyroid neoplasms was not thoroughly investigated. In the present study, in addition to PTC, we evaluated various thyroid tumor types for the most common BRAF T1796A mutation by direct genomic DNA sequencing. We found a high and similar frequency (45%) of the BRAF T1796A mutation in two geographically distinct PTC patient populations: one composed of sporadic cases from North America, and the other from Kiev, Ukraine, that included individuals who were exposed to the Chernobyl nuclear accident. In contrast, we found BRAF mutation in only 20% of anaplastic thyroid cancers and no mutation in medullary thyroid cancers and benign thyroid hyperplasia. We also confirmed previous reports that the BRAF T1796A mutation did not occur in benign thyroid adenomas and follicular thyroid cancers. Specific analysis of the Ukraine patients with confirmed history of radiation exposure failed to show a higher incidence of BRAF mutation. Our results suggest that frequent occurrence of BRAF mutation is inherently associated with PTC, irrespective of geographic origin, and is apparently not a radiation-susceptible mutation. The lack or low prevalence of BRAF mutation in other thyroid neoplasms is consistent with the notion that other previously defined genetic alterations on the same signaling pathway are sufficient to cause tumorigenesis in most thyroid neoplasms.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.