A gene, ATM, that is mutated in the autosomal recessive disorder ataxia telangiectasia (AT) was identified by positional cloning on chromosome 11q22-23. AT is characterized by cerebellar degeneration, immunodeficiency, chromosomal instability, cancer predisposition, radiation sensitivity, and cell cycle abnormalities. The disease is genetically heterogeneous, with four complementation groups that have been suspected to represent different genes. ATM, which has a transcript of 12 kilobases, was found to be mutated in AT patients from all complementation groups, indicating that it is probably the sole gene responsible for this disorder. A partial ATM complementary DNA clone of 5.9 kilobases encoded a putative protein that is similar to several yeast and mammalian phosphatidylinositol-3' kinases that are involved in mitogenic signal transduction, meiotic recombination, and cell cycle control. The discovery of ATM should enhance understanding of AT and related syndromes and may allow the identification of AT heterozygotes, who are at increased risk of cancer.
The biological response to DNA double-strand breaks acts to preserve genome integrity. Individuals bearing inactivating mutations in components of this response exhibit clinical symptoms that include cellular radiosensitivity, immunodeficiency, and cancer predisposition. The archetype for such disorders is Ataxia-Telangiectasia caused by biallelic mutation in ATM, a central component of the DNA damage response. Here, we report that the ubiquitin ligase RNF168 is mutated in the RIDDLE syndrome, a recently discovered immunodeficiency and radiosensitivity disorder. We show that RNF168 is recruited to sites of DNA damage by binding to ubiquitylated histone H2A. RNF168 acts with UBC13 to amplify the RNF8-dependent histone ubiquitylation by targeting H2A-type histones and by promoting the formation of lysine 63-linked ubiquitin conjugates. These RNF168-dependent chromatin modifications orchestrate the accumulation of 53BP1 and BRCA1 to DNA lesions, and their loss is the likely cause of the cellular and developmental phenotypes associated with RIDDLE syndrome.
We show that hypomorphic mutations in hMRE11, but not in ATM, are present in certain individuals with an ataxia-telangiectasia-like disorder (ATLD). The cellular features resulting from these hMRE11 mutations are similar to those seen in A-T as well as NBS and include hypersensitivity to ionizing radiation, radioresistant DNA synthesis, and abrogation of ATM-dependent events, such as the activation of Jun kinase following exposure to gamma irradiation. Although the mutant hMre11 proteins retain some ability to interact with hRad50 and Nbs1, formation of ionizing radiation-induced hMre11 and Nbs1 foci was absent in hMRE11 mutant cells. These data demonstrate that ATM and the hMre11/hRad50/Nbs1 protein complex act in the same DNA damage response pathway and link hMre11 to the complex pathology of A-T.
To counteract the continuous exposure of cells to agents that damage DNA, cells have evolved complex regulatory networks called checkpoints to sense DNA damage and coordinate DNA replication, cell-cycle arrest and DNA repair. It has recently been shown that the histone H2A variant H2AX specifically controls the recruitment of DNA repair proteins to the sites of DNA damage. Here we identify a novel BRCA1 carboxy-terminal (BRCT) and forkhead-associated (FHA) domain-containing protein, MDC1 (mediator of DNA damage checkpoint protein 1), which works with H2AX to promote recruitment of repair proteins to the sites of DNA breaks and which, in addition, controls damage-induced cell-cycle arrest checkpoints. MDC1 forms foci that co-localize extensively with gamma-H2AX foci within minutes after exposure to ionizing radiation. H2AX is required for MDC1 foci formation, and MDC1 forms complexes with phosphorylated H2AX. Furthermore, this interaction is phosphorylation dependent as peptides containing the phosphorylated site on H2AX bind MDC1 in a phosphorylation-dependent manner. We have shown by using small interfering RNA (siRNA) that cells lacking MDC1 are sensitive to ionizing radiation, and that MDC1 controls the formation of damage-induced 53BP1, BRCA1 and MRN foci, in part by promoting efficient H2AX phosphorylation. In addition, cells lacking MDC1 also fail to activate the intra-S phase and G2/M phase cell-cycle checkpoints properly after exposure to ionizing radiation, which was associated with an inability to regulate Chk1 properly. These results highlight a crucial role for MDC1 in mediating transduction of the DNA damage signal.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.