Understanding the diffusion of lithium ions in electrode materials for lithium ion batteries is of great importance for their knowledge-based optimization and development of novel materials and cell designs. The galvanostatic intermittent titration technique (GITT) is widely applied in battery research to study the diffusion of lithium in anode and cathode materials depending on the degree of lithiation. While transport properties of electrode materials at high and ambient temperatures are largely available, low temperature diffusion and rate coefficients are hardly reported in the literature and vary by orders of magnitude for identical active materials. Herein, we demonstrate and discuss several challenges and pitfalls in the application and evaluation of GITT measurements for determining the effective chemical lithium ion diffusion coefficient in lithium insertion electrodes, which become especially important at low temperature. This includes theoretical considerations and an experimental analysis of the promising cathode material LiNi0.5Co0.2Mn0.3O2 (NCM523) in the wide temperature range of −40 °C to 40 °C. We show how the choice of experimental conditions for the GITT measurements and of the subsequent mathematical evaluation significantly influence the derived diffusion coefficient. The results suggest that the large scattering of reported values of the diffusion coefficient could be caused by the use of different evaluation procedures. Simple calculation methods appear to be less suited the lower the temperature is. It is shown that the complementary use of GITT and EIS supplemented by detailed knowledge of the microstructure of the electrode significantly improves the accuracy of determining the diffusion coefficient.
Silicon is a promising negative electrode for secondary lithium-based batteries, but the electrochemical reversibility of particularly nanostructured silicon electrodes drastically depends on their interfacial characteristics, commonly known as the solid electrolyte interface (SEI). The beneficial origin of certain electrolyte additives or different binders is still discussed controversially owing to the challenging peculiarities of interfacial post-mortem investigations of electrodes. In this work, we address the common difficulties of SEI investigations of porous silicon/carbon nanostructures and study the addition of a fluoroethylene carbonate (FEC) as a stabilizing additive as well as the use of two different binders, carboxymethyl cellulose/styrene-butadiene rubber (CMC/SBR) and polyacrylic acid (PAA), for the SEI formation. The electrode is composed of silicon nanocrystallites below 5 nm diameter allowing a detailed investigation of interfacial characteristics of silicon owing to the high surface area. We first performed galvanostatic long-term cycling (400 times) and carried out comprehensive ex situ characterization of the cycled nanocrystalline silicon electrodes with XRD, EDXS, TEM and XPS. We modified the preparation of the electrode for post-mortem characterization to distinguish between electrolyte components and the actual SEI. The impact of the FEC additive and two different binders on the interfacial layer is studied and the occurrence of diverse compounds, in particular LiF, Li2O and phosphates, is discussed. These results help to understand general issues in SEI formation and to pave the way for the development of advanced electrolytes allowing for a long-term performance of nanostructured Si-based electrodes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.