Estrogen receptor (ER) expression and proliferative activity are established prognostic factors in breast cancer. In a search for additional prognostic motifs, we analyzed the gene expression patterns of 200 tumors of patients who were not treated by systemic therapy after surgery using a discovery approach. After performing hierarchical cluster analysis, we identified coregulated genes related to the biological process of proliferation, steroid hormone receptor expression, as well as B-cell and T-cell infiltration. We calculated metagenes as a surrogate for all genes contained within a particular cluster and visualized the relative expression in relation to time to metastasis with principal component analysis. Distinct patterns led to the hypothesis of a prognostic role of the immune system in tumors with high expression of proliferationassociated genes. In multivariate Cox regression analysis, the proliferation metagene showed a significant association with metastasis-free survival of the whole discovery cohort [hazard ratio (HR), 2.20; 95% confidence interval (95% CI), 1.40-3.46]. The B-cell metagene showed additional independent prognostic information in carcinomas with high proliferative activity (HR, 0.66; 95% CI, 0.46-0.97). A prognostic influence of the B-cell metagene was independently confirmed by multivariate analysis in a first validation cohort enriched for high-grade tumors (n = 286; HR, 0.78; 95% CI,) and a second validation cohort enriched for younger patients (n = 302; HR, 0.83; 95% CI, 0.7-0.97). Thus, we could show in three cohorts of untreated, node-negative breast cancer patients that the humoral immune system plays a pivotal role in metastasis-free survival of carcinomas of the breast. [Cancer Res 2008;68(13):5405-13]
DNA methylation is an epigenetic modification that plays an important role in gene regulation. It can be influenced by stochastic events, environmental factors and developmental programs. However, little is known about the natural variation of gene-specific methylation patterns. In this study, we performed quantitative methylation analyses of six differentially methylated imprinted genes (H19, MEG3, LIT1, NESP55, PEG3 and SNRPN), one hypermethylated pluripotency gene (OCT4) and one hypomethylated tumor suppressor gene (APC) in chorionic villus, fetal and adult cortex, and adult blood samples. Both average methylation level and range of methylation variation depended on the gene locus, tissue type and/or developmental stage. We found considerable variability of functionally important methylation patterns among unrelated healthy individuals and a trend toward more similar methylation levels in monozygotic twins than in dizygotic twins. Imprinted genes showed relatively little methylation changes associated with aging in individuals who are >25 years. The relative differences in methylation among neighboring CpGs in the generally hypomethylated APC promoter may not only reflect stochastic fluctuations but also depend on the tissue type. Our results are consistent with the view that most methylation variation may arise after fertilization, leading to epigenetic mosaicism.
Objective To determine whether the amniotic fluid index (AFI) or the single deepest vertical pocket (SDP) technique for estimating amniotic fluid volume is superior for predicting adverse pregnancy outcome.
Methods
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.