The GSCI proposes an evidence-based, practical, sustainable, and scalable model of care representing eight core principles with a six-step implementation plan. The aim of this model is to help transform spine care globally, especially in low- and middle-income countries and underserved communities. These slides can be retrieved under Electronic Supplementary Material.
The All-sky Medium Energy Gamma-ray Observatory (AMEGO) is a probe class mission concept that will provide essential contributions to multimessenger astrophysics in the late 2020s and beyond. AMEGO combines high sensitivity in the 200 keV to 10 GeV energy range with a wide field of view, good spectral resolution, and polarization sensitivity. Therefore, AMEGO is key in the study of multimessenger astrophysical objects that have unique signatures in the gamma-ray regime, such as neutron star mergers, supernovae, and flaring active galactic nuclei. The order-of-magnitude improvement compared to previous MeV missions also enables discoveries of a wide range of phenomena whose energy output peaks in the relatively unexplored medium-energy gamma-ray band.
Adding VLBI capability to the SKA arrays will greatly broaden the science of the SKA, and is feasible within the current specifications. SKA-VLBI can be initially implemented by providing phased-array outputs for SKA1-MID and SKA1-SUR and using these extremely sensitive stations with other radio telescopes, and in SKA2 by realising a distributed configuration providing baselines up to thousands of km, merging it with existing VLBI networks. The motivation for and the possible realization of SKA-VLBI is described in this paper.Advancing Astrophysics with the Square Kilometre Array
The GSCI proposes an evidence-based model that is consistent with recent calls for action to reduce the global burden of spinal disorders. The model requires testing to determine feasibility. If it proves to be implementable, this model holds great promise to reduce the tremendous global burden of spinal disorders. These slides can be retrieved under Electronic Supplementary Material.
ThunderKAT is the image-plane transients programme for MeerKAT. The goal as outlined in 2010, and still today, is to find, identify and understand high-energy astrophysical processes via their radio emission (often in concert with observations at other wavelengths). Through a comprehensive and complementary programme of surveying and monitoring Galactic synchrotron transients (across a range of compact accretors and a range of other explosive phenomena) and exploring distinct populations of extragalactic synchrotron transients (microquasars, supernovae and possibly yet unknown transient phenomena) -both from direct surveys and commensal observations -we will revolutionise our understanding of the dynamic and explosive transient radio sky. As well as performing targeted programmes of our own, we have made agreements with the other MeerKAT large survey projects (LSPs) that we will also search their data for transients. This commensal use of the other surveys, which remains one of our key programme goals in 2016, means that the combined MeerKAT LSPs will produce by far the largest GHz-frequency radio transient programme to date.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.