Bone resorption and remodeling is an intricately controlled, physiological process that requires the function of osteoclasts. The processes governing both the differentiation and activation of osteoclasts involve signals induced by osteoprotegerin ligand (OPGL), a member of tumor necrosis factor (TNF) superfamily, and its cognate receptor RANK. The molecular mechanisms of the intracellular signal transduction remain to be elucidated. Here we report that mice deficient in TNF receptor-associated factor 6 (TRAF6) are osteopetrotic with defects in bone remodeling and tooth eruption due to impaired osteoclast function. Using in vitro assays, we demonstrate that TRAF6 is crucial not only in IL-1 and CD40 signaling but also, surprisingly, in LPS signaling. Furthermore, like TRAF2 and TRAF3, TRAF6 is essential for perinatal and postnatal survival. These findings establish unexpectedly diverse and critical roles for TRAF6 in perinatal and postnatal survival, bone metabolism, LPS, and cytokine signaling.
The mPTEN gene is fundamental for embryonic development in mice, as mPTEN3-5 mutant embryos died by day 9.5 of gestation, with patterning defects in cephalic and caudal regions and defective placentation. Heterozygous mice developed lymphomas associated with loss of heterozygosity of the wild-type mPTEN allele, and tumor appearance was accelerated by gamma-irradiation. These lymphomas had high levels of activated Akt/PKB, the protein product of a murine proto-oncogene with anti-apoptotic function, associated with thymic lymphomas. This suggests that tumors associated with mPTEN loss of heterozygosity may arise as a consequence of an acquired survival advantage. We provide direct evidence of the role of mPTEN as a tumor suppressor gene in mice, and establish the mPTEN mutant mouse as an experimental model for investigating the role of PTEN in cancer progression.
The outcome of T-cell responses after T-cell encounter with specific antigens is modulated by co-stimulatory signals, which are required for both lymphocyte activation and development of adaptive immunity. ICOS, an inducible co-stimulator with homology to CD28, is expressed on activated, but not resting T cells, and shows T-cell co-stimulatory function in vitro. ICOS binds specifically to its counter-receptor B7RP-1 (refs 5,6,7), but not to B7-1 or B7-2. Here we provide in vivo genetic evidence that ICOS delivers a co-stimulatory signal that is essential both for efficient interaction between T and B cells and for normal antibody responses to T-cell-dependent antigens. To determine the physiological function of ICOS, we generated and characterized gene-targeted ICOS-deficient mice. In vivo, a lack of ICOS results in severely deficient T-cell-dependent B-cell responses. Germinal centre formation is impaired and immunoglobulin class switching, including production of allergy-mediating IgE, is defective. ICOS-deficient T cells primed in in vivo and restimulated in vitro with specific antigen produce only low levels of interleukin-4, but remain fully competent to produce interferon-gamma.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.