Field and laboratory observations show that crystals commonly form by the addition and attachment of particles that range from multi-ion complexes to fully formed nanoparticles. The particles involved in these nonclassical pathways to crystallization are diverse, in contrast to classical models that consider only the addition of monomeric chemical species. We review progress toward understanding crystal growth by particle-attachment processes and show that multiple pathways result from the interplay of free-energy landscapes and reaction dynamics. Much remains unknown about the fundamental aspects, particularly the relationships between solution structure, interfacial forces, and particle motion. Developing a predictive description that connects molecular details to ensemble behavior will require revisiting long-standing interpretations of crystal formation in synthetic systems, biominerals, and patterns of mineralization in natural environments.
is the thermodynamically stable phase of coarsely crystalline aluminum oxide, but syntheses of nanocrystalline Al 2 O 3 usually result in ␥-Al 2 O 3. Adsorption microcalorimetry, thermogravimetric analyses, and Brunauer-Emmett-Teller adsorption experiments, coupled with recently reported high-temperature solution calorimetry data, prove that ␥-Al 2 O 3 has a lower surface energy than ␣-Al 2 O 3 and becomes energetically stable at surface areas greater than 125 square meters per gram and thermodynamically stable at even smaller surface areas (for example, 75 square meters per gram at 800 kelvin). The results are in agreement with recent molecular dynamics simulations and provide conclusive experimental evidence that differences in surface energy can favor the formation of a particular polymorph.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.