The feasibility of large-scale biological CO 2 removal to achieve stringent climate targets remains unclear. Direct Air Carbon Capture and Storage (DACCS) offers an alternative negative emissions technology (NET) option. Here we conduct the first inter-model comparison on the role of DACCS in 1.5 and 2 °C scenarios, under a variety of techno-economic assumptions. Deploying DACCS significantly reduces mitigation costs, and it complements rather than substitutes other NETs. The key factor limiting DACCS deployment is the rate at which it can be scaled up. Our scenarios’ average DACCS scale-up rates of 1.5 GtCO 2 /yr would require considerable sorbent production and up to 300 EJ/yr of energy input by 2100. The risk of assuming that DACCS can be deployed at scale, and finding it to be subsequently unavailable, leads to a global temperature overshoot of up to 0.8 °C. DACCS should therefore be developed and deployed alongside, rather than instead of, other mitigation options.
This supplementary material contains the description of the Land-use and Energy-system models developed and applied in this study. It also presents the Scenario Building Procedure and more detailed results of the simulations made, including the georeferenced description of the land-use change, the composition of the energy mix and an analysis of the uncertainties of associated with the findings.
Many countries have implemented national climate policies to accomplish pledged Nationally Determined Contributions and to contribute to the temperature objectives of the Paris Agreement on climate change. In 2023, the global stocktake will assess the combined effort of countries. Here, based on a public policy database and a multi-model scenario analysis, we show that implementation of current policies leaves a median emission gap of 22.4 to 28.2 GtCO 2 eq by 2030 with the optimal pathways to implement the well below 2°C and 1.5°C Paris goals. If Nationally Determined Contributions would be fully implemented, this gap would be reduced by a third. Interestingly, the countries evaluated were found to not achieve their pledged contributions with implemented policies (implementation gap), or to have an ambition gap with optimal pathways towards well below 2°C. This shows that all countries would need to accelerate the implementation of policies for renewable technologies, while efficiency improvements are especially important in emerging countries and fossilfuel-dependent countries.
The bottom-up approach of the Nationally Determined Contributions (NDCs) in the Paris Agreement has led countries to self-determine their greenhouse gas (GHG) emission reduction targets. The planned 'ratcheting-up' process, which aims to ensure that the NDCs comply with the overall goal of limiting global average temperature increase to well below 2°C or even 1.5°C, will most likely include some evaluation of 'fairness' of these reduction targets. In the literature, fairness has been discussed around equity principles, for which many different effort-sharing approaches have been proposed. In this research, we analysed how countrylevel emission targets and carbon budgets can be derived based on such criteria. We apply novel methods directly based on the global carbon budget, and, for comparison, more commonly used methods using GHG mitigation pathways. For both, we studied the following approaches: equal cumulative per capita emissions, contraction and convergence, grandfathering, greenhouse development rights and ability to pay. As the results critically depend on parameter settings, we used the wide authorship from a range of countries included in this paper to determine default settings and sensitivity analyses. Results show that effortsharing approaches that (i) calculate required reduction targets in carbon budgets (relative to baseline budgets) and/or (ii) take into account historical emissions when determining carbon budgets can lead to (large) negative remaining carbon budgets for developed countries. This is the case for the equal cumulative per capita approach and especially the greenhouse development rights approach. Furthermore, for developed countries, all effort-sharing approaches except grandfathering lead to more stringent budgets than cost-optimal budgets, indicating that cost-optimal approaches do not lead to outcomes that can be regarded as fair according to most effort-sharing approaches.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.