Nervous systems contain sensory neurons, local neurons, projection neurons and motor neurons. To understand how these building blocks form whole circuits, we must distil these broad classes into neuronal cell types and describe their network connectivity. Using an electron micrograph dataset for an entire Drosophila melanogaster brain, we reconstruct the first complete inventory of olfactory projections connecting the antennal lobe, the insect analogue of the mammalian olfactory bulb, to higher-order brain regions in an adult animal brain. We then connect this inventory to extant data in the literature, providing synaptic-resolution 'holotypes' both for heavily investigated and previously unknown cell types. Projection neurons are approximately twice as numerous as reported by light level studies; cell types are stereotyped, but not identical, in cell and synapse numbers between brain hemispheres. The lateral horn, the insect analogue of the mammalian cortical amygdala, is the main target for this olfactory information and has been shown to guide innate behaviour. Here, we find new connectivity motifs, including: axo-axonic connectivity between projection neurons; feedback and lateral inhibition of these axons by local neurons; and the convergence of different inputs, including non-olfactory inputs and memory-related feedback onto lateral horn neurons. This differs from the configuration of the second most prominent target for olfactory projection neurons: the mushroom body calyx, the insect analogue of the mammalian piriform cortex and a centre for associative memory. Our work provides a complete neuroanatomical platform for future studies of the adult Drosophila olfactory system. Highlights• First complete parts list for second-order neurons of an adult olfactory system • Quantification of left-right stereotypy in cell and synapse number • Axo-axonic connections form hierarchical communities in the lateral horn • Local neurons and memory-related feedback target projection neuron axons 149 197 346 Figure 1: Second-order olfactory projection neurons. A Layout of the mammalian olfactory system. B The olfactory system in fruit flies shares similarities with that of mammals. C Second-order olfactory projection neurons (PNs) in all antennal lobe tracts (ALT) were reconstructed from a serial section transmission electron microscopy (ssTEM) volume of an entire fly brain. Scale bar represents 1 micron. D Exemplary sparse (left) and broad (right) PN. Dendrites used for classification in blue. E PNs were classified as uni-(uPN) or multiglomerular (mPN) projection neurons based on the sparseness of their glomerular innervation (see also Figure S1). F PN counts by class and neurotransmitter. G Comparison of right-(RHS) vs left-hand-side (LHS) cell counts for 58 of the 78 uPN types. H Scaling of the olfactory system from larval to adult D. melanogaster. Bates, Schlegel et al. 2 / 31
The hemibrain connectome provides large scale connectivity and morphology information for the majority of the central brain of Drosophila melanogaster. Using this data set, we provide a complete description of the Drosophila olfactory system, covering all first, second and lateral horn-associated third-order neurons. We develop a generally applicable strategy to extract information flow and layered organisation from connectome graphs, mapping olfactory input to descending interneurons. This identifies a range of motifs including highly lateralised circuits in the antennal lobe and patterns of convergence downstream of the mushroom body and lateral horn. Leveraging a second data set we provide a first quantitative assessment of inter- versus intra-individual stereotypy. Comparing neurons across two brains (three hemispheres) reveals striking similarity in neuronal morphology across brains. Connectivity correlates with morphology and neurons of the same morphological type show similar connection variability within the same brain as across two brains.
Summary Nervous systems contain sensory neurons, local neurons, projection neurons, and motor neurons. To understand how these building blocks form whole circuits, we must distil these broad classes into neuronal cell types and describe their network connectivity. Using an electron micrograph dataset for an entire Drosophila melanogaster brain, we reconstruct the first complete inventory of olfactory projections connecting the antennal lobe, the insect analog of the mammalian olfactory bulb, to higher-order brain regions in an adult animal brain. We then connect this inventory to extant data in the literature, providing synaptic-resolution “holotypes” both for heavily investigated and previously unknown cell types. Projection neurons are approximately twice as numerous as reported by light level studies; cell types are stereotyped, but not identical, in cell and synapse numbers between brain hemispheres. The lateral horn, the insect analog of the mammalian cortical amygdala, is the main target for this olfactory information and has been shown to guide innate behavior. Here, we find new connectivity motifs, including axo-axonic connectivity between projection neurons, feedback, and lateral inhibition of these axons by a large population of neurons, and the convergence of different inputs, including non-olfactory inputs and memory-related feedback onto third-order olfactory neurons. These features are less prominent in the mushroom body calyx, the insect analog of the mammalian piriform cortex and a center for associative memory. Our work provides a complete neuroanatomical platform for future studies of the adult Drosophila olfactory system.
Animal behavior is principally expressed through neural control of muscles. Therefore understanding how the brain controls behavior requires mapping neuronal circuits all the way to motor neurons. We have previously established technology to collect large-volume electron microscopy data sets of neural tissue and fully reconstruct the morphology of the neurons and their chemical synaptic connections throughout the volume. Using these tools we generated a dense wiring diagram, or connectome, for a large portion of theDrosophilacentral brain. However, in most animals, including the fly, the majority of motor neurons are located outside the brain in a neural center closer to the body, i.e. the mammalian spinal cord or insect ventral nerve cord (VNC). In this paper, we extend our effort to map full neural circuits for behavior by generating a connectome of the VNC of a male fly.
The hemibrain connectome (Scheffer et al., 2020) provides large scale connectivity and morphology information for the majority of the central brain of Drosophila melanogaster. Using this data set, we provide a complete description of the most complex olfactory system studied at synaptic resolution to date, covering all first, second and third-order neurons of the olfactory system associated with the antennal lobe and lateral horn (mushroom body neurons are described in a parallel paper, (Li et al., 2020)). We develop a generally applicable strategy to extract information flow and layered organisation from synaptic resolution connectome graphs, mapping olfactory input to descending interneurons. This identifies a range of motifs including highly lateralised circuits in the antennal lobe and patterns of convergence downstream of the mushroom body and lateral horn. We also leverage a second data set (FAFB, (Zheng et al., 2018)) to provide a first quantitative assessment of inter- versus intra-individual stereotypy. Complete reconstruction of select developmental lineages in two brains (three brain hemispheres) reveals striking similarity in neuronal morphology across brains for >170 cell types. Within and across brains, connectivity correlates with morphology. Notably, neurons of the same morphological type show similar connection variability within one brain as across brains; this property should enable a rigorous quantitative approach to cell typing.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.