Numerous studies showed that, at present, traumatic brain injury (TBI) is one of the main causes of death in young adults, but also a main cause of disabilities at all ages. For these reasons, TBI are continuously investigated. In our study, we evaluated the histopathological (HP) and immunohistochemical (IHC) changes that occurred in the brain in underage patients after a severe TBI depending on the survival period. We histopathologically and immunohistochemically analyzed a number of 22 cases of children, deceased in Dolj County, Romania, following some severe TBI, undergoing autopsy within the Institute of Forensic Medicine in Craiova between 2015-2020. Patients were divided into three groups depending on the survival period, namely: (i) patients who died during the first 24 hours of the accident; (ii) patients who died after seven days of survival; (iii) patients who died after 15 days of survival. Microscopic examinations of the brain fragments, collected during the necropsy examination, showed that the traumatic agent caused primary injuries in all brain structures (cerebral parenchyma, meninges, blood vessels). However, HP injuries ranged in size and intensity from one area to another of the brain. In patients with a longer survival period, there was observed the presence of smaller primary injuries and larger secondary injuries. There was also observed a growth in the number of meningo-cerebral microscopic injuries, depending on the increase of the survival period.
Traumatic brain injury (TBI) represents a public healthcare problem and a major economic burden, all over the world. It is estimated that every year, on the globe, there occur about two million severe TBI and over 42 million mild TBI. The main causes of TBI in civil population are fallings, followed by car accidents. In the last decades, the accelerated development of car industry and the poor development of traffic infrastructure in low- and average-income countries led to an increasing number of brain injuries, this becoming a major problem for medical health systems. According to some studies, approximately 1.35 million people die every year because of car accidents. In the last four decades, these types of injuries started to be studied in order to understand the lesion mechanisms for developing new safety equipment that may be installed on vehicles. The device presented by us for causing a TBI in a lab rat (mechanical pendulum) allows the performance of several major types of TBI, according to the kinetic energy, exposure area, contact surface, etc. The impact energies obtained by the device we presented may vary on a large scale, from less than 1 J up to 10 J, according to its weight, launching angle and impact head shape, thus being obtained minor, moderate or severe TBI.
The author’s present concerns about the study opportunities offered by the control unit (which allow experimental programming) related to viewing, adjusting and recording certain engine operating parameters. For a dedicated power supply solution (in which we find an own admission variant of route) functional enhancements the related to the settings type of injection, number of injections, injection time and air mixture – fuel, are proposed. Performance evaluation, approached in a sequence type identification system was done using a testing methodology specific to the chassis dynamometer bench to highlight the targeted optimizations.
Trafficking is a growing problem in cities around the world. Congestions occurring at peak hours have become common problems that all the major cities of the world are facing. Some metropolises, however, have found solutions to reduce traffic jams, especially in peak hours. Problem solutions are given by road traffic management by reducing waiting times and queues, in the same way as traffic safety increases. The first step in achieving coherent management is to achieve a method of collecting traffic data. Under the current infrastructure development conditions, one of the few solutions is given by virtual inductive loops. Inductive loop detectors have become the most utilized sensors in traffic management systems. The gathered traffic data is used to improve traffic efficiency (i.e., warning users about congested areas or planning new infrastructures). This paper aims to develop virtual intersection models by using primary data from virtual inductive loop video analyzers.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.