The utilization and development of efficient water electrolyzers for hydrogen production is currently limited due to the sluggish kinetics of the anodic processthe oxygen evolution reaction (OER). Moreover, state of the art OER catalysts contain high amounts of expensive and low-abundance noble metals such as Ru and Ir, limiting their large-scale industrial utilization. Therefore, the development of low-cost, highly active, and stable OER catalysts is a key requirement toward the implementation of a hydrogen-based economy. We have developed a synthetic approach to high-surface-area chlorine-free iridium oxide nanoparticles dispersed in titania (IrO2-TiO2), which is a highly active and stable OER catalyst in acidic media. IrO2-TiO2 was prepared in one step in molten NaNO3 (Adams fusion method) and consists of ca. 1–2 nm IrO2 particles distributed in a matrix of titania nanoparticles with an overall surface area of 245 m2 g–1. This material contains 40 molM % of iridium and demonstrates improved OER activity and stability in comparison to the commercial benchmark catalyst and state of the art high-surface-area IrO2. Ex situ characterization of the catalyst indicates the presence of iridium hydroxo surface species, which were previously associated with the high OER activity. Operando X-ray absorption studies demonstrate the evolution of the surface species as a function of the applied potential, suggesting the conversion of the initial hydroxo surface layer to the oxo-terminated surface via anodic oxidation (OER regime).
We report an operando examination of a model nanocrystalline In2O3 catalyst for methanol synthesis via CO2 hydrogenation (300 °C, 20 bar) by combining X-ray absorption spectroscopy (XAS), X-ray powder diffraction (XRD), and in situ transmission electron microscopy (TEM). Three distinct catalytic regimes are identified during CO2 hydrogenation: activation, stable performance, and deactivation. The structural evolution of In2O3 nanoparticles (NPs) with time on stream (TOS) followed by XANES-EXAFS-XRD associates the activation stage with a minor decrease of the In–O coordination number and a partial reduction of In2O3 due to the formation of oxygen vacancy sites (i.e., In2O3–x ). As the reaction proceeds, a reductive amorphization of In2O3 NPs takes place, characterized by decreasing In–O and In–In coordination numbers and intensities of the In2O3 Bragg peaks. A multivariate analysis of the XANES data confirms the formation of In2O3–x and, with TOS, metallic In. Notably, the appearance of molten In0 coincides with the onset of catalyst deactivation. This phase transition is also visualized by in situ TEM, acquired under reactive conditions at 800 mbar pressure. In situ TEM revealed an electron beam assisted transformation of In2O3 nanoparticles into a dynamic structure in which crystalline and amorphous phases coexist and continuously interconvert. The regeneration of the deactivated In0/In2O3–x catalyst by reoxidation was critically assessed revealing that the spent catalyst can be reoxidized only partially in a CO2 atmosphere or air yielding an average crystallite size of the resultant In2O3 that is approximately an order of magnitude larger than the initial one.
Ruthenium pyrochlores, that is, oxides of composition A2Ru2O7−δ, have emerged recently as state-of-the-art catalysts for the oxygen evolution reaction (OER) in acidic conditions. Here, we demonstrate that the A-site substituent in yttrium ruthenium pyrochlores Y1.8M0.2Ru2O7−δ (M = Cu, Co, Ni, Fe, Y) controls the concentration of surface oxygen vacancies (VO) in these materials whereby an increased concentration of VO sites correlates with a superior OER activity. DFT calculations rationalize these experimental trends demonstrating that the higher OER activity and VO surface density originate from a weakened strength of the M–O bond, scaling with the formation enthalpy of the respective MO x phases and the coupling between the M d states and O 2p states. Our work introduces a novel catalyst with improved OER performance, Y1.8Cu0.2Ru2O7−δ, and provides general guidelines for the design of active electrocatalysts.
Two-dimensional (2D) carbides, nitrides, and carbonitrides known as MXenes are emerging materials with a wealth of useful applications. However, the range of metals capable of forming stable MXenes is limited mostly to early transition metals of groups 3−6, making the exploration of properties inherent to mid or late transition metal MXenes very challenging. To circumvent the inaccessibility of MXene phases derived from mid-to-late transition metals, we have developed a synthetic strategy that allows the incorporation of such transition metal sites into a host MXene matrix. Here, we report the structural characterization of a Mo 2 CT x :Co phase (where T x are O, OH, and F surface terminations) that is obtained from a cobalt-substituted bulk molybdenum carbide (β-Mo 2 C:Co) through a two-step synthesis: first an intercalation of gallium yielding Mo 2 Ga 2 C:Co followed by removal of Ga via HF treatment. Extended X-ray absorption fine structure (EXAFS) analysis confirms that Co atoms occupy Mo positions in the Mo 2 CT x lattice, providing isolated Co centers without any detectable formation of other cobalt-containing phases. The beneficial effect of cobalt substitution on the redox properties of Mo 2 CT x :Co is manifested in a substantially improved hydrogen evolution reaction (HER) activity, as compared to the unsubstituted Mo 2 CT x catalyst. Density functional theory (DFT) calculations attribute the enhanced HER kinetics of Mo 2 CT x :Co to the favorable binding of hydrogen on the oxygen terminated MXene surface that is strongly influenced by the substitution of Mo by Co in the Mo 2 CT x lattice. In addition to the remarkable HER activity, Mo 2 CT x :Co features excellent operational and structural stability, on par with the best performing non-noble metal-based HER catalysts. Overall, our work expands the compositional space of the MXene family by introducing a material with site-isolated cobalt centers embedded in the stable matrix of Mo 2 CT x . The synthetic approach presented here illustrates that tailoring the properties of MXenes for a specific application can be achieved via substitution of the host metal sites by mid or late transition metals.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.