The midpoint redox potentials (E(m)) of all cofactors in photosystem I from Synechococcus elongatus as well as of the iron-sulfur (Fe(4)S(4)) clusters in two soluble ferredoxins from Azotobacter vinelandii and Clostridium acidiurici were calculated within the framework of a semi-continuum dielectric approach. The widely used treatment of proteins as uniform media with single dielectric permittivity is oversimplified, particularly, because permanent charges are considered both as a source for intraprotein electric field and as a part of dielectric polarizability. Our approach overcomes this inconsistency by using two dielectric constants: optical epsilon(o)=2.5 for permanent charges pre-existing in crystal structure, and static epsilon(s) for newly formed charges. We also take into account a substantial dielectric heterogeneity of photosystem I revealed by photoelectric measurements and a liquid junction potential correction for E(m) values of relevant redox cofactors measured in aprotic solvents. We show that calculations based on a single permittivity have the discrepancy with experimental data larger than 0.7 V, whereas E(m) values calculated within our approach fall in the range of experimental estimates. The electrostatic analysis combined with quantum chemistry calculations shows that (i) the energy decrease upon chlorophyll dimerization is essential for the downhill mode of primary charge separation between the special pair P(700) and the primary acceptor A(0); (ii) the primary donor is apparently P(700) but not a pair of accessory chlorophylls; (iii) the electron transfer from the A branch quinone Q(A) to the iron-sulfur cluster F(X) is most probably downhill, whereas that from the B branch quinone Q(B) to F(X) is essentially downhill.
Electrogenic and redox events in the reaction-centre complexes from Rhodopseudomonas viridis have been studied. In contrast to the previous points of view it is shown that all the four hemes of the tightly bound cytochrome c have different Em values (-60, + 20, + 310 and + 380 mV). The first three hemes reveal ci absorption maxima at 554 nm, 552 nm and 556 nm respectively. The 380-mV heme displays a split ci band with a maximum at 559 nm and a shoulder at 552 nm. Such a splitting is due to non-degenerated Qx and Q, transitions in the ironporphyrin ring as demonstrated by magnetic circular dichroism spectra. Fast kinetic measurements show that, at redox potentials when only high-potential hemes c-559 and c-556 are reduced, heme c-559 appears to be the electron donor to P-960' (z = 0.32 ps) whereas heme c-556 serves to rereduce c-559 (z = 2.5 ps). Upon reduction of the third heme (c-552), the P-960' reduction rate increases twofold (z = 0.17 ps) and all photoinduced redox events within the cytochrome appear to be complete in less than 1 ps after the flash. The following sequence of the redox centers is tentatively suggested: c-554, c-556, c-552, c-559, P-960.To study electrogenesis, the reaction-centre complexes from Rps. viridis were incorporated into asolectin liposomes, and fast kinetics of laser flash-induced electric potential difference has been measured in proteoliposomes adsorbed on a phospholipid-impregnated film. The electrical difference induced by a single 15-11s flash was found to be as high as 100 mV. The photoelectric response has been found to involve four electrogenic stages associated with (I) QA reduction by P-960; (11) reduction of P-960+ by heme c-559; (111) reduction of c-559 by c-556 and (IV) protonation of Qg-. The relative contributions of stages I, 11,111 and IV are found to be equal to 70%, 15%, 5% and lo%, respectively, of the overall electrogenic process. At the same time, the first three respective distances along the axis normal to the membrane plane covered by electrons, calculated from X-ray data of Deisenhofer et al. [J, Mol. Biol. 180, 385-398 (1984)], are 22%, 18.5% and 26%. This indicates that the efficiency of electrogenic phases depends first of all upon the value of the dielectric constant of the respective membrane regions rather than upon the distance between the redox groups involved. The efficiency is higher, the deeper these groups are immersed in the membrane.The concept of transmembrane electron flow in the coupling sites of redox chains was put forward by Mitchell virtually simultaneously with the general chemiosmotic principle of energy coupling via protonmotive force [l]. Whereas the general formulation of the chemiosmotic theory proved to be accepted by the majority of bioenergeticists, there is still considerable debate on the electrogenic transmembrane electron transfer as a mechanism of ApH generation.There are many indications that electron transfer across the coupling membrane does indeed occur in reaction centre complexes of photosynthetic bacteria (reviewed...
The back-reaction kinetics in Photosystem I (PS I) were studied on the microsecond-to-s time scale in cyanobacterial preparations, which differed in the number of iron-sulfur clusters to assess the contributions of particular components to the reduction of P700+. In membrane fragments and in trimeric P700-FA/FB complexes, the major contribution to the absorbance change at 820 nm (delta A820) was the back-reaction of FA- and/or FB- with lifetimes of approximately 10 and 80 ms (approximately 10% and 40% relative amplitude). The decay of photoinduced electric potential (delta psi) across a membrane with directionally incorporated P700-FA/FB complexes had similar kinetics. HgCl2-treated PS I complexes, which contain FA but no FB, retain both of these kinetic components, indicating that neither can be assigned uniquely to a specific acceptor. These results suggest that FA- reduces P700+ directly and argue for a rapid electron equilibration between FA and FB, which would eliminate their kinetic distinction in a back-reaction. In PsaC-depleted P700-Fx cores, as well as in P700-FA/FB complexes with chemically reduced FA and FB, the major contribution to the delta A820 and the delta psi decay is a biphasic back-reaction of F-X (approximately 400 microseconds and 1.5 ms) with some contribution from A-1 (approximately 10 microseconds and 100 microseconds), the latter of which is variable depending on experimental conditions. The delta A820 decay in a P700-A1 core devoid of all iron-sulfur clusters comprises two phases with lifetimes of 10 microseconds and 130 microseconds (2.7:1 ratio). The biexponential back-reaction kinetics found for each of the electron acceptors may be related to existence of different conformational states of the PS I complex. In all preparations studied, excitation at 532 nm with flash energies exceeding 10 mJ gives rise to formation of antenna 3Chl, which also contributes to delta A820 decay on the tens-of-microsecond time scale. A distinction between delta A820 components related to back-reactions and to 3Chl decay can be made by analysis of flash saturation dependencies and by measurements of kinetics with preoxidized P700.
The ultrafast (<100 fs) conversion of delocalized exciton into charge-separated state between the primary donor P700 (bleaching at 705 nm) and the primary acceptor A0 (bleaching at 690 nm) in photosystem I (PS I) complexes from Synechocystis sp. PCC 6803 was observed. The data were obtained by application of pump-probe technique with 20-fs low-energy pump pulses centered at 720 nm. The earliest absorbance changes (close to zero delay) with a bleaching at 690 nm are similar to the product of the absorption spectrum of PS I complex and the laser pulse spectrum, which represents the efficiency spectrum of the light absorption by PS I upon femtosecond excitation centered at 720 nm. During the first approximately 60 fs the energy transfer from the chlorophyll (Chl) species bleaching at 690 nm to the Chl bleaching at 705 nm occurs, resulting in almost equal bleaching of the two forms with the formation of delocalized exciton between 690-nm and 705-nm Chls. Within the next approximately 40 fs the formation of a new broad band centered at approximately 660 nm (attributed to the appearance of Chl anion radical) is observed. This band decays with time constant simultaneously with an electron transfer to A1 (phylloquinone). The subtraction of kinetic difference absorption spectra of the closed (state P700+A0A1) PS I reaction center (RC) from that of the open (state P700A0A1) RC reveals the pure spectrum of the P700+A0- ion-radical pair. The experimental data were analyzed using a simple kinetic scheme: An*-->k1[(PA0)*A1--><100 fs P+A0-A1]-->k2P+A0A1-, and a global fitting procedure based on the singular value decomposition analysis. The calculated kinetics of transitions between intermediate states and their spectra were similar to the kinetics recorded at 694 and 705 nm and the experimental spectra obtained by subtraction of the spectra of closed RCs from the spectra of open RCs. As a result, we found that the main events in RCs of PS I under our experimental conditions include very fast (<100 fs) charge separation with the formation of the P700+A0-A1 state in approximately one half of the RCs, the approximately 5-ps energy transfer from antenna Chl* to P700A0A1 in the remaining RCs, and approximately 25-ps formation of the secondary radical pair P700+A0A1-.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.